精英家教网 > 高中数学 > 题目详情

【题目】已知函数是常数).

1)若,求函数的值域;

2)若为奇函数,求实数.并证明的图像始终在的图像的下方;

3)设函数,若对任意,以为边长总可以构成三角形,求的取值范围.

【答案】12;证明见解析(3

【解析】

1)把代入后反解可得,解分式不等式即可;

2)直接利用奇函数的定义代入即可求解,利用作差法即可证明结论;

3)由题意可得,结合,利用换元法转化为,再结合二次函数的性质即可.

1)由题意,是常数),

时,此时,即,整理可得

,则,即

解得

故函数的值域为.

2)由题意,为奇函数,则,即

化简得

恒不为零,

,解得,此时

的图像始终在的图像的下方.

3)由题意,得

,则,其对称轴为

①当,即时,此时单调递减,

,即

解得

②当,即时,此时先减后增左端点高,

,无解;

③当,即时,此时先减后增右端点高,

,无解;

④当,即时,此时单调递增,

解得

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y万元有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

1)画出散点图并判断是否线性相关;

2)如果线性相关,求线性回归方程;

3)估计使用年限为10年时,维修费用是多少?

附注:①参考公式:回归方程中斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设是以为底的自然对数,.

1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).

2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】牛顿迭代法(Newton's method)又称牛顿拉夫逊方法(NewtonRaphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设的根,选取作为初始近似值,过点作曲线的切线轴的交点的横坐标,称的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称的二次近似值.重复以上过程,直到的近似值足够小,即把作为的近似解.构成数列.对于下列结论:

.

其中正确结论的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

合计

男性市民

女性市民

合计

(1)根据已知数据,把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线内有一点,过的两条直线分别与抛物线交于两点,且满足,已知线段的中点为,直线的斜率为.

(1)求证:点的横坐标为定值;

(2)如果,点的纵坐标小于3,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,四边形为直角梯形,的中点.

1)求证:∥平面

2)若点在线段上,满足,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100位学生的笔试成绩,按成绩分组,得到的频率分布表如下所示.

1)请先求出频率分布表中①②位置相应的数据,再在答题纸上完成下列频率分布直方图(如图所示);

组号

分组

频数

频率

1

5

0.050

2

0.350

3

30

4

20

0.200

5

10

0.100

合计

100

1.000

频率分布直方图

2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样抽取6位学生进入第二轮面试,求第345组每组各抽取多少位学生进入第二轮面试;

3)在(2)的前提下,学校决定在6位学生中随机抽取2位学生接受A考官进行面试,求第4组至少有一位学生被考官A面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且

)求双曲线的方程;

)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案