精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)={cos^2}x+{cos^2}(x-\frac{π}{6})$,x∈R
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在区间$[-\frac{π}{3},\frac{π}{4}]$上的最大值和最小值.

分析 由三角函数公式化简可得f(x)=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})+1$
(1)由周期公式可得;
(2)由x的范围和三角函数的最值可得.

解答 解:由三角函数公式化简可得f(x)=cos2x+cos2(x-$\frac{π}{6}$)
=$\frac{1+cos2x}{2}+\frac{{1+cos(2x-\frac{π}{3})}}{2}$=$\frac{{\sqrt{3}}}{4}sin2x+\frac{3}{4}cos2x+1$
=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})+1$
(1)函数f(x)的最小正周期$T=\frac{2π}{2}=π$;
(2)∵函数f(x)在$[{-\frac{π}{3},\frac{π}{12}}]$单调递增,在$[{\frac{π}{12},\frac{π}{4}}]$单调递减,
∵$f(-\frac{π}{3})=\frac{1}{4},f(\frac{π}{12})=\frac{{\sqrt{3}}}{2}+1,f(\frac{π}{4})=1+\frac{{\sqrt{3}}}{4}$,
∴$f{(x)_{min}}=\frac{1}{4},f{(x)_{max}}=\frac{{\sqrt{3}}}{2}+1$.

点评 本题考查三角函数恒等变换,涉及三角函数周期性和最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(x-1)2,g(x)=a(lnx)2,其中a∈R,且a≠0.
(I)若直线x=e(e为自然对数的底数)与曲线y=f(x)和y=g(x)分别交于 A、B两点,且曲线y=f(x)在点A处的切线与曲线y=g(x)在点B处的切线互相平行,求a的值;
(Ⅱ)设h(x)=f(x)+mlnx(m∈R,且m≠0)有两个极值点x1,x2,且x1<x2,证明:$h({x_2})>\frac{1-2ln2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设ln3=a,ln7=b,则ea+eb=10.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图1所示,在边长为12的正方形AA′A′1A1中,点B,C在线段AA′上,且AB=3,BC=4,作BB1∥AA1,分别交A1A′1、AA′1于点B1、P,作CC1∥AA1,分别交A1A′1、AA′1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A′A′1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1.则在三棱柱ABC-A1B1C1中,直线AP与直线A1Q所成角的余弦值为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数在其定义域内既是奇函数又是增函数的是(  )
A.y=2xB.y=x3+xC.$y=-\frac{1}{x}$D.y=-log2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{(2x+1)^{2}}{(x+1)(4x+1)}$(x≥0)的最小值为$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知F(x)=$\frac{1}{x+1}$,f(x)=F′(x),求${∫}_{0}^{1}$f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点O为坐标原点,点An(n,αn)(n∈N*)为函数f(x)=$\frac{1}{x+1}$的图象上的任意一点,向量$\overrightarrow{i}$=(0,1).θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则数列|$\frac{cos{θ}_{n}}{sin{θ}_{n}}$|的前2015项的和为(  )
A.2B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b∈R,则“a+b>2”是“a>1或b>1”(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不必要也不充分条件充要条件

查看答案和解析>>

同步练习册答案