分析 由三角函数公式化简可得f(x)=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})+1$
(1)由周期公式可得;
(2)由x的范围和三角函数的最值可得.
解答 解:由三角函数公式化简可得f(x)=cos2x+cos2(x-$\frac{π}{6}$)
=$\frac{1+cos2x}{2}+\frac{{1+cos(2x-\frac{π}{3})}}{2}$=$\frac{{\sqrt{3}}}{4}sin2x+\frac{3}{4}cos2x+1$
=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})+1$
(1)函数f(x)的最小正周期$T=\frac{2π}{2}=π$;
(2)∵函数f(x)在$[{-\frac{π}{3},\frac{π}{12}}]$单调递增,在$[{\frac{π}{12},\frac{π}{4}}]$单调递减,
∵$f(-\frac{π}{3})=\frac{1}{4},f(\frac{π}{12})=\frac{{\sqrt{3}}}{2}+1,f(\frac{π}{4})=1+\frac{{\sqrt{3}}}{4}$,
∴$f{(x)_{min}}=\frac{1}{4},f{(x)_{max}}=\frac{{\sqrt{3}}}{2}+1$.
点评 本题考查三角函数恒等变换,涉及三角函数周期性和最值,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不必要也不充分条件充要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com