精英家教网 > 高中数学 > 题目详情
4.在长方体ABCD-A1B1C1D1中,AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA1=2,BC和A1C1所成的角=45度
AA1和BC1所成的角=60度.

分析 由AC∥A1C1,知∠ACB是BC和A1C1所成的角;由BC1∥AD1,知∠A1AD1是AA1和BC1所成的角.由此能求出结果.

解答 解:∵在长方体ABCD-A1B1C1D1中,
∴AC∥A1C1
∴∠ACB是BC和A1C1所成的角,
∵AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,
∴∠ACB=45°,
∴BC和A1C1所成的角为45度;
∵BC1∥AD1
∴∠A1AD1是AA1和BC1所成的角,
∵AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA1=2,
∴tan∠A1AD1=$\frac{{A}_{1}{D}_{1}}{A{A}_{1}}$=$\frac{2\sqrt{3}}{2}=\sqrt{3}$,
∴∠A1AD1=60°.
∴AA1和BC1所成的角为60度.
故答案为:45,60.

点评 本题考查线线角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知2a=5b=m且$\frac{1}{a}+\frac{1}{b}$=2,则m的值是(  )
A.100B.10C.$\sqrt{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知一个袋中装有大小相同的4个红球,3个白球,3个黄球.若任意取出2个球,则取出的2个球颜色相同的概率是$\frac{4}{15}$;若有放回地任意取10次,每次取出一个球,则取到红球个数X的方差为2.4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{x^2}{9}-\frac{y^2}{m}=1$的焦距是10,则实数m的值为16,其双曲线渐进线方程为y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={1,2,3,4,5,6,7},B={x|0<x<5,x∈Z},全集U=R,求:
(1)A∩B;                 
(2)AUB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{4}+\frac{y^2}{9}=1$,动直线$l:y=\frac{3}{2}x+m$
(1)若动直线l与椭圆C相交,求实数m的取值范围;
(2)当动直线l与椭圆C相交时,证明:这些直线被椭圆截得的线段的中点都在直线3x+2y=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.向量$\overrightarrow{a}$=(2,-1,3),$\overrightarrow{b}$=(-4,2,x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=$\frac{10}{3}$;若$\overrightarrow{a}$与$\overrightarrow{b}$夹角是锐角,则x 的取值范围$(\frac{10}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在(x2-$\frac{1}{2{x}^{3}}$)n的展开式中含有常数项,则正整数n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an},{bn}满足2Sn=(an+2)bn,其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为$\frac{2}{3}$,公比为-$\frac{1}{3}$的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1,并写出数列{an}的通项公式;
(3)在(2)的条件下,设cn=$\frac{{a}_{n}}{{b}_{n}}$,
求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.

查看答案和解析>>

同步练习册答案