精英家教网 > 高中数学 > 题目详情
13.在(x2-$\frac{1}{2{x}^{3}}$)n的展开式中含有常数项,则正整数n的最小值为(  )
A.4B.5C.6D.7

分析 由题意利用二项展开式的通项公式,可得2n=5r,由此求得正整数n的最小值.

解答 解:(x2-$\frac{1}{2{x}^{3}}$)n的展开式的通项公式为Tr+1=${C}_{n}^{r}$•${(-\frac{1}{2})}^{r}$•x2n-5r
由于展开式中含有常数项,则2n=5r,r=0,1,2,3,…,n,
则正整数n的最小值为5,
故选:B.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.计算:${(2\sqrt{2})^{\frac{2}{3}}}×{(0.1)^{-1}}-lg2-lg5$=19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在长方体ABCD-A1B1C1D1中,AB=2$\sqrt{3}$,AD=2$\sqrt{3}$,AA1=2,BC和A1C1所成的角=45度
AA1和BC1所成的角=60度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱锥A-BCD中,△ABC和△BCD所在平面互相垂直,且AB=CD=4,AC=4$\sqrt{2}$,CD=4$\sqrt{3}$,∠ACB=45°,E,F分别为MN的中点.
(1)求证:EF∥平面ABD;
(2)求二面角E-BF-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x||x-1|≥1,x∈R},B={x||x-2|<1,x∈Z},则A∩B(  )
A.[2,3]B.[2,3)C.{2,3}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.点M (3,-2,1)关于平面yOz对称的点的坐标是(  )
A.(-3,-2,1 )B.(-3,2,-1)C.(-3,-2,-1)D.(-3,2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.椭圆$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}\right.$(θ为参数)的焦距为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.复数i(2+i)的虚部为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有(  )
A.336种B.320种C.192种D.144种

查看答案和解析>>

同步练习册答案