精英家教网 > 高中数学 > 题目详情
2.复数i(2+i)的虚部为2.

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:复数i(2+i)=2i-1的虚部为2.
故答案为:2.

点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{x^2}{9}-\frac{y^2}{m}=1$的焦距是10,则实数m的值为16,其双曲线渐进线方程为y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在(x2-$\frac{1}{2{x}^{3}}$)n的展开式中含有常数项,则正整数n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(-2,f(-2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“-1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为(  )
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆锥的母线l=10,母线与旋转轴的夹角α=30°,则圆锥的表面积为75π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an},{bn}满足2Sn=(an+2)bn,其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为$\frac{2}{3}$,公比为-$\frac{1}{3}$的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1,并写出数列{an}的通项公式;
(3)在(2)的条件下,设cn=$\frac{{a}_{n}}{{b}_{n}}$,
求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2-4x+c的值域为[0,+∞).
(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数在[$\frac{2}{a}$,+∞)的单调性,并用单调性的定义证明你的结论;
(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-{x}^{2}+4x-3},1≤x≤3}\\{{2}^{x}-8,x>3}\end{array}\right.$,若F(x)=f(x)-kx在其定义域内有3个零点,则实数k∈(0,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

同步练习册答案