精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-{x}^{2}+4x-3},1≤x≤3}\\{{2}^{x}-8,x>3}\end{array}\right.$,若F(x)=f(x)-kx在其定义域内有3个零点,则实数k∈(0,$\frac{\sqrt{3}}{3}$).

分析 问题转化为f(x)和y=kx有3个交点,画出函数f(x)和y=kx的图象,求出临界值,从而求出k的范围即可.

解答 解:若F(x)=f(x)-kx在其定义域内有3个零点,
即f(x)和y=kx有3个交点,
画出函数f(x)和y=kx的图象,如图示:

点(2,0)到直线y=kx的距离d=$\frac{|2k|}{\sqrt{1{+k}^{2}}}$=1,
解得:k=$\frac{\sqrt{3}}{3}$,
故:0<k<$\frac{\sqrt{3}}{3}$;
故答案为:(0,$\frac{\sqrt{3}}{3}$).

点评 本题考查了函数的零点问题,考查数形结合思想以及点到直线的距离,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.复数i(2+i)的虚部为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有(  )
A.336种B.320种C.192种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知空间两条直线m,n两个平面α,β,给出下面四个命题:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m?α,n?β⇒n⊥α;
③m∥n;m∥α⇒n∥α
④α∥β,m∥n,m⊥α⇒n⊥β.
其中正确的序号是(  )
A.①④B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),则函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1经过点(2,3),两条渐近线的夹角为60°,直线l交双曲线于A、B两点.
(1)求双曲线C的方程;
(2)若l过原点,P为双曲线上异于A,B的一点,且直线PA、PB的斜率kPA,kPB均存在,求证:kPA•kPB为定值;
(3)若l过双曲线的右焦点F1,是否存在x轴上的点M(m,0),使得直线l绕点F1无论怎样转动,都有$\overrightarrow{MA}$•$\overrightarrow{MB}$=0成立?若存在,求出M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在下列各区间中,存在着函数f(x)=x3+4x-3的零点的区间是(  )
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,$B({-2\sqrt{3},0})$,$C({2\sqrt{3},0})$,且△ABC的周长为$8+4\sqrt{3}$.
(1)求点A的轨迹方程C;
(2)过点P(2,1)作曲线C的一条弦,使弦被这点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x∈R|ax2+2x+1=0,a≠0.a∈R.}中只有一个元素(A也可以叫做单元素集合),求a的值,并求出这个元素.

查看答案和解析>>

同步练习册答案