精英家教网 > 高中数学 > 题目详情
4.在下列各区间中,存在着函数f(x)=x3+4x-3的零点的区间是(  )
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

分析 要判断函数f(x)=x3+4x-3的零点的位置,我们可以根据零点存在定理,则该区间两端点对应的函数值,应异号,将四个答案中各区间的端点依次代入函数的解析式,易判断零点的位置.

解答 解:∵f(-1)=-8,
f(0)=-3,
f(1)=2,
f(2)=13,
根据零点存在定理,
∵f(0)•f(1)<0,
∴函数在[0,1]存在零点,
故选:B.

点评 要判断函数的零点位于哪个区间,可以根据零点存在定理,即如果函数f(x)在区间(a,b)上存在一个零点,则f(a)•f(b)<0,如果方程在某区间上有且只有一个根,可根据函数的零点存在定理进行解答,但要注意该定理只适用于开区间的情况,如果已知条件是闭区间或是半开半闭区间,我们要分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an},{bn}满足2Sn=(an+2)bn,其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为$\frac{2}{3}$,公比为-$\frac{1}{3}$的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1,并写出数列{an}的通项公式;
(3)在(2)的条件下,设cn=$\frac{{a}_{n}}{{b}_{n}}$,
求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为3.62.(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-{x}^{2}+4x-3},1≤x≤3}\\{{2}^{x}-8,x>3}\end{array}\right.$,若F(x)=f(x)-kx在其定义域内有3个零点,则实数k∈(0,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x,y∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,y)$,$\overrightarrow c=(2,-4)$且$\overrightarrow a⊥\overrightarrow c$,$\overrightarrow b∥\overrightarrow c$,则x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=2x,且$f(x-1)=\frac{1}{g(x)}+1$(x≠1),则g(x)的值域是(  )
A.(-∞,-1)B.(-∞,-1)∪(0,+∞)C.(-1,+∞)D.(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$f(x)=a-\frac{2}{{{2^x}+1}}$,x∈R,且f(x)为奇函数.
(I)求a的值及f(x)的解析式;
(II)判断函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式$\frac{x+5}{{{{(x-1)}^2}}}≥1$的解集是(  )
A.[-4,1]B.[-1,4]C.[-4,1)D.[-1,1)∪(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式|x|+|x-2|<3的解集为$(-\frac{1}{2},\frac{5}{2})$.

查看答案和解析>>

同步练习册答案