精英家教网 > 高中数学 > 题目详情
15.将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为3.62.(精确到0.01)

分析 由题意,正三角形ABC的高为5$\sqrt{3}$,利用余弦定理求出△A′B′C′中最短边的边长.

解答 解:由题意,正三角形ABC的高为5$\sqrt{3}$,
∴△A′B′C′中最短边的边长为$\sqrt{(\frac{5\sqrt{3}}{2})^{2}+{5}^{2}-2•\frac{5\sqrt{3}}{2}•5•\frac{\sqrt{2}}{2}}$≈3.62.
故答案为3.62.

点评 本题考查“斜二测”画法,考查余弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.椭圆$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}\right.$(θ为参数)的焦距为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=sin(2x+\frac{π}{3})$在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是(  )
A.$0<a≤\frac{π}{2}$B.$0<a≤\frac{π}{12}$
C.$a=kπ+\frac{π}{12},k∈{N^*}$D.$2kπ<a≤2kπ+\frac{π}{12},k∈N$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有(  )
A.336种B.320种C.192种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.由n(n≥2)个不同的数构成的数列a1,a2,…an中,若1≤i<j≤n时,aj<ai(即后面的项aj小于前面项ai),则称ai与aj构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8}$的逆序数为4.
(1)计算数列${a_n}=-2n+19(1≤n≤100,n∈{N^*})$的逆序数;
(2)计算数列${a_n}=\left\{\begin{array}{l}{({\frac{1}{3}})^n},n为奇数\\-\frac{n}{n+1},n为偶数\end{array}\right.$(1≤n≤k,n∈N*)的逆序数;
(3)已知数列a1,a2,…an的逆序数为a,求an,an-1,…a1的逆序数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知空间两条直线m,n两个平面α,β,给出下面四个命题:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m?α,n?β⇒n⊥α;
③m∥n;m∥α⇒n∥α
④α∥β,m∥n,m⊥α⇒n⊥β.
其中正确的序号是(  )
A.①④B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),则函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在下列各区间中,存在着函数f(x)=x3+4x-3的零点的区间是(  )
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义:已知函数f(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数f(x)在[m,n](m<n)上具有“DK”性质.例如函数$y=\sqrt{x}$在[1,9]上就具有“DK”性质.
(1)判断函数f(x)=x2-2x+2在[1,2]上是否具有“DK”性质?说明理由;
(2)若g(x)=x2-ax+2在[a,a+1]上具有“DK”性质,求a的取值范围.

查看答案和解析>>

同步练习册答案