分析 利用已知条件确定<$\overrightarrow{CA\;},\overrightarrow{BD\;}$>120°,利用$|\overrightarrow{CD\;}{|^2}$=${(\overrightarrow{CA\;}+\overrightarrow{AB\;}+\overrightarrow{BD\;})^2}$,通过向量的数量积的运算求出CD的距离.
解答 解:由已知,可得AC⊥AB,BD⊥AB,
∵二面角的大小为60°,
则<$\overrightarrow{AC}$,$\overrightarrow{BD}$>=60°.
∴<$\overrightarrow{CA\;},\overrightarrow{BD\;}$>=120°,![]()
∴$|\overrightarrow{CD\;}{|^2}$=${(\overrightarrow{CA\;}+\overrightarrow{AB\;}+\overrightarrow{BD\;})^2}$
=$|\overrightarrow{CA\;}{|^2}$+$|\overrightarrow{AB\;}{|^2}$+$|\overrightarrow{BD\;}{|^2}$+2$\overrightarrow{CA\;}•\overrightarrow{AB\;}$+2$\overrightarrow{CA\;}•\overrightarrow{BD\;}$+2$\overrightarrow{AB\;}•\overrightarrow{BD\;}$
=36+16+64+2×6×8×cos120°=68.
∴$CD=\sqrt{68}$=2$\sqrt{17}$.
故答案为:2$\sqrt{17}$
点评 本题考查空间两点间的距离的求法,空间向量的数量积的应用,根据二面角的大小转化为向量的夹角关系是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若该大学某女生身高增加1cm,则其体重约增加0.85kg | |
| B. | 回归直线过样本的中心($\overline{x}$,$\overline{y}$) | |
| C. | y与x具有正的线性相关关系 | |
| D. | 若该大学某女生身高为170cm,则可断定其体重必为58.79kg |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x∈R|0<x<$\frac{1}{2}$} | B. | {x∈R|$\frac{1}{2}$<x<1} | C. | {x∈R|0<x<1} | D. | {x∈R|x≠0} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com