精英家教网 > 高中数学 > 题目详情
8.已知集合A={x∈R|0<x<1},B={x∈R|x•(2x-1)>0},则A∩B=(  )
A.{x∈R|0<x<$\frac{1}{2}$}B.{x∈R|$\frac{1}{2}$<x<1}C.{x∈R|0<x<1}D.{x∈R|x≠0}

分析 化简集合B,计算A∩B即可.

解答 解:集合A={x∈R|0<x<1},
B={x∈R|x•(2x-1)>0}={x∈R|x<0或x>$\frac{1}{2}$},
所以A∩B={x∈R|$\frac{1}{2}$<x<1}.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在60°的二面角α-l-β的棱l上有两点A,B,直线AC,BD分别在这个二面角的两个半平面内,AC⊥l.BD⊥l,若AB=4,AC=6,BD=8,则CD的长为2$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a,b∈R,集合A中有三个元素1,a+b,a,集合B中有三个元素0,$\frac{b}{a}$,b,且A=B,则a+b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在复平面内,复数z=$\frac{1}{3-i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.由数字1,2组成的三位数的个数是6(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=cosx,则f′($\frac{π}{6}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,且$\overrightarrow a$•($\overrightarrow a$-$\overrightarrow b$)=8,|$\overrightarrow a$|=2,则|$\overrightarrow b$|=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=1.
(1)求棱AA1与BC所成的角的大小;
(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+13x+36.
(Ⅰ)求h(x)=$\frac{1}{{\sqrt{f(x)}}}$的定义域;
(Ⅱ)对任意x>0,$\frac{f(x)}{x}$>m恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案