精英家教网 > 高中数学 > 题目详情
3.由数字1,2组成的三位数的个数是6(用数字作答).

分析 直接根据分步计数原理可得.

解答 解:每一位置都有2种排法,故有23=8种,
其中111,222,不合题意,
故有8-2=6种
故答案为:6

点评 本题考查了简单的排列问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC的内角A,B,C对应的边分别是a,b,c,已知$\frac{sinA}{a}=\frac{{\sqrt{3}cosB}}{b}$,
(1)求B;
(2)若b=2,△ABC的周长为2$\sqrt{3}$+2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线l过点(1,1),且与直线x+2y+2016=0平行,则直线l的方程为x+2y-3=0.(答案写成一般式方程形式)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“存在x0∈R,log2x0<0”的否定是(  )
A.?x∈R,log2x>0B.不存在x0∈R,使log2x0>0
C.假命题D.真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ln2x,则f′(x)=(  )
A.$\frac{1}{4x}$B.$\frac{1}{2x}$C.$\frac{2}{x}$D.$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈R|0<x<1},B={x∈R|x•(2x-1)>0},则A∩B=(  )
A.{x∈R|0<x<$\frac{1}{2}$}B.{x∈R|$\frac{1}{2}$<x<1}C.{x∈R|0<x<1}D.{x∈R|x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.研究函数f(x)=$\frac{lnx}{x}$的性质,完成下面两个问题:
①将f(2)、f(3)、f(5)按从小到大排列为f(5)<f(2)<f(3);;
②函数g(x)=${x}^{\frac{1}{x}}$(x>0)的最大值为e${\;}^{\frac{1}{e}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{lo{g}_{2}(x+1),x>1}\end{array}\right.$且方程[f(x)]2-af(x)+2=0恰有四个不同的实根,则实数a的取值范围是(  )
A.(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞)B.(2$\sqrt{2}$,3)C.(2,3)D.(2$\sqrt{2}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥P-ABC的顶点P在平面ABC内的射影为点H,侧棱PA=PB=PC,点O为三棱锥P-ABC的外接球O的球心,AB=8,AC=6,已知$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$+$\frac{1}{{1+\sqrt{3}}}$$\overrightarrow{HP}$,且λ+μ=1,则球O的表面积为150π.

查看答案和解析>>

同步练习册答案