精英家教网 > 高中数学 > 题目详情
16.定义在R上的奇函数y=f(x)为减函数,若m,n满足f(m2-2m)+f(2n-n2)≤0,则当1≤n≤$\frac{3}{2}$时,$\frac{m}{n}$的取值范围为(  )
A.[-$\frac{2}{3}$,1]B.[1,$\frac{3}{2}$]C.[$\frac{1}{3}$,$\frac{3}{2}$]D.[$\frac{1}{3}$,1]

分析 根据条件,确定函数的奇偶性,利用函数的奇偶性和单调性将不等式进行转化,利用线性规划的知识即可得到结论.

解答 解:由题意,不等式f(m2-2m)+f(2n-n2)≤0等价为f(m2-2m)≤-f(2n-n2)=f(-2n+n2),
∵定义在R上的函数y=f(x)是减函数
∴m2-2m≥n2-2n,即(m-n)(m+n-2)≥0,且1≤n≤$\frac{3}{2}$,
n=$\frac{3}{2}$,m=$\frac{3}{2}$,或m=$\frac{1}{2}$设z=$\frac{m}{n}$,则z的几何意义为区域内的动点P(n,m)与原点连线的斜率,
($\frac{3}{2}$,$\frac{3}{2}$)与原点的连线斜率为1,($\frac{3}{2}$,$\frac{1}{2}$)与原点的连线斜率为$\frac{1}{3}$,
∴$\frac{m}{n}$的取值范围为[$\frac{1}{3},1]$
故选:D.

点评 本题主要考查函数奇偶性和单调性的应用,利用线性规划以及直线斜率的几何意义是解决本题的关键,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若(x+2)n=xn+axn-1+…+bx+c(n∈N*,n≥3),且b=4c,则a的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(x+$\frac{1}{x}$+2)5的展开式中整理后的常数项为252.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,且$\overrightarrow a•\overrightarrow b=1$.若$\overrightarrow e$为平面单位向量,$({\overrightarrow a+\overrightarrow b})•\overrightarrow e$的最大值为(  )
A.$\sqrt{6}$B.6C.$\sqrt{7}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x|+|x-6|.
(Ⅰ)求不等式f(x)≤10的解集;
(Ⅱ)记f(x)的最小值为m,若正实数a,b,c满足a+b+c=m,求证:$\sqrt{a}+\sqrt{2b}+\sqrt{3c}≤m$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={y∈N|y<6},N={x|log2(x-1)≤2},则M∩N=(  )
A.(1,5]B.(-∞,5]C.{1,2,3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将一些正整数按如下规律排列,则10行第3个数为532
第1行 1  2
第2行  2   4    6    8
第3行 4   7    10   13
第4行 8   12   16   20   24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{\frac{x}{4}+\frac{y}{4}≤1}\\{y≥2-\frac{x}{2}}\end{array}\right.$,则z=($\frac{1}{2}$)2x-y的最小值为$\frac{1}{256}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设(1+x+x2n=a0+a1x+…+a2nx2n,则a2+a4+…+a2n的值为(  )
A.3nB.3n-2C.$\frac{{3}^{n}-1}{2}$D.$\frac{{3}^{n}+1}{2}$

查看答案和解析>>

同步练习册答案