| A. | [-$\frac{2}{3}$,1] | B. | [1,$\frac{3}{2}$] | C. | [$\frac{1}{3}$,$\frac{3}{2}$] | D. | [$\frac{1}{3}$,1] |
分析 根据条件,确定函数的奇偶性,利用函数的奇偶性和单调性将不等式进行转化,利用线性规划的知识即可得到结论.
解答 解:由题意,不等式f(m2-2m)+f(2n-n2)≤0等价为f(m2-2m)≤-f(2n-n2)=f(-2n+n2),
∵定义在R上的函数y=f(x)是减函数
∴m2-2m≥n2-2n,即(m-n)(m+n-2)≥0,且1≤n≤$\frac{3}{2}$,
n=$\frac{3}{2}$,m=$\frac{3}{2}$,或m=$\frac{1}{2}$设z=$\frac{m}{n}$,则z的几何意义为区域内的动点P(n,m)与原点连线的斜率,
($\frac{3}{2}$,$\frac{3}{2}$)与原点的连线斜率为1,($\frac{3}{2}$,$\frac{1}{2}$)与原点的连线斜率为$\frac{1}{3}$,
∴$\frac{m}{n}$的取值范围为[$\frac{1}{3},1]$
故选:D.
点评 本题主要考查函数奇偶性和单调性的应用,利用线性规划以及直线斜率的几何意义是解决本题的关键,综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | 6 | C. | $\sqrt{7}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,5] | B. | (-∞,5] | C. | {1,2,3,4,5} | D. | {2,3,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3n | B. | 3n-2 | C. | $\frac{{3}^{n}-1}{2}$ | D. | $\frac{{3}^{n}+1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com