精英家教网 > 高中数学 > 题目详情
1.设f(x)=lnx,g(x)=$\frac{1}{2}$x|x|.
(1)求g(x)在x=-1处的切线方程;
(2)令F(x)=x•f(x)-g(x),求F(x)的单调区间;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求实数m的取值范围.

分析 (1)求出函数g(x)的导数,计算g(-1),g′(-1),求出切线方程即可;
(2)求出函数F(x)的导函数,得到导函数的单调性,从而求出函数F(x)的单调性即可;
(3)已知可转化为x1>x2≥1时,mg(x1)-x1f(x1)≥mg(x2)-x2f(x2)恒成立,令h(x)=mg(x)-xf(x)=$\frac{m}{2}$x2-xlnx,则h(x)为单调递增的函数结合导数工具即可求得实数m的取值范围.

解答 解:(1)x<0时,g(x)=-$\frac{1}{2}$x2,g′(x)=-x,
故g(-1)=-$\frac{1}{2}$,g′(-1)=1,
故切线方程是:y+$\frac{1}{2}$=(x+1),
即x-y+$\frac{1}{2}$=0;
(2)F(x)=xlnx-$\frac{1}{2}$x|x|=xlnx-$\frac{1}{2}$x2,(x>0),
F′(x)=lnx-x+1,F″(x)=$\frac{1}{x}$-1,
令F″(x)>0,解得:0<x<1,令F″(x)<0,解得:x>1,
故F′(x)在(0,1)递增,在(1,+∞)递减,
故F′(x)≤F′(1)=0,
故F(x)在(0,+∞)递减;
(3)已知可转化为x1>x2≥1时,mg(x1)-x1f(x1)≥mg(x2)-x2f(x2)恒成立,
令h(x)=mg(x)-xf(x)=$\frac{m}{2}$x2-xlnx,则h(x)为单调递增的函数,
故h′(x)=mx-lnx-1≥0恒成立,即m≥$\frac{lnx+1}{x}$恒成立,
令m(x)=$\frac{lnx+1}{x}$,则m′(x)=-$\frac{lnx}{{x}^{2}}$,
∴当x∈[1,+∞)时,m′(x)≤0,m(x)单调递减,
m(x)≤m(1)=1,
故m≥1.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x∈N|x2-6x+5≤0},B={x∈N|x>2},图中阴影部分所表示的集合为(  )
A.{0,1,2}B.{1,2}C.{1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知纯虚数z满足(1-2i)z=1+ai,则实数a等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是奇函数,当x>0时,f(x)=x2-1,则使f(x)>0的x的取值范围x>1或-1<x<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a,b为实数,函数y1=x2+ax+b,y2=x2+bx+a均有两个不同的零点,且y=y1y2只有三个不同零点,则这三个不同零点之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知三棱柱ABC-A1B1C1的侧棱与底面ABC垂直,且AA1=4,AC=BC=2,∠ACB=90°.
(1)证明:AC⊥平面BCC1B1
(2)求直线BB1与平面AB1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面积为2,若$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{EC}$,BE⊥DC,则$\overrightarrow{DA}$$•\overrightarrow{DC}$的值为(  )
A.-2B.-2$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E点,把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$,如图<2>:若G,H分别为D′B,D′E的中点.
(1)求证:GH⊥平面AD′C;
(2)求平面D′AB与平面D′CE的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}的前n项和为Sn,且a1+a3=$\frac{5}{2}$,a2+a4=$\frac{5}{4}$,则S6=$\frac{63}{16}$.

查看答案和解析>>

同步练习册答案