精英家教网 > 高中数学 > 题目详情
2.已知数列{an}中,a1=1,前n项和为Sn,且Sn+1=$\frac{3}{2}$Sn+1.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Tn

分析 (1)利用递推关系与等比数列的通项公式即可得出;
(2)利用等比数列的前n项和公式即可得出.

解答 解:(1)∵Sn+1=$\frac{3}{2}$Sn+1,∴当n≥2时,${S}_{n}=\frac{3}{2}{S}_{n-1}$+1,可得an+1=$\frac{3}{2}{a}_{n}$,
又a1+a2=$\frac{3}{2}{a}_{1}$+1,解得a2=$\frac{3}{2}$,∴${a}_{2}=\frac{3}{2}{a}_{1}$.
∴数列{an}是等比数列,首项为1,公比为$\frac{3}{2}$.
∴an=$(\frac{3}{2})^{n-1}$.
(2)$\frac{1}{{a}_{n}}$=$(\frac{2}{3})^{n-1}$,
∴数列{$\frac{1}{{a}_{n}}$}是等比数列,首项为1,公比为$\frac{2}{3}$.
∴数列{$\frac{1}{{a}_{n}}$}的前n项和Tn=$\frac{1-(\frac{2}{3})^{n}}{1-\frac{2}{3}}$=$3[1-(\frac{2}{3})^{n}]$.

点评 本题考查了等比数列的通项公式与前n项和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l:y=kx+1与圆O:x2+y2=4交于A、B两点.
(1)求|$\overrightarrow{OA}$+$\overrightarrow{OB}$|的范围;
(2)若过A,B作圆M,且与y=-4相切,求圆M面积最小时圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn且满足an=2Sn-1Sn(n≥2),a1=1.
(1)求证:{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在R上的函数f(x)=(k+2)x-k-1(k∈R)满足f($\frac{1}{2}$)<f($\frac{1}{3}$),则k的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:an+1=an2(n∈N*),a1=e,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+1,g(x)=3x+5.
(1)当x∈[0,m]时,恒有f(x)≤g(x),求m的最大值.
(2)非空集合A满足:对于A中的任意一个x,总有f(x)=g(x),求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列三个命题:
(1)当x=1时,x+$\frac{4}{x+1}$的值最小;
(2)函数y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$有最小值2;
(3)函数y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$有最小值2;
上述命题中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设任意实数x,y满足|x|<1,|y|<1,求证:$\frac{1}{1-{x}^{2}}$+$\frac{1}{1-{y}^{2}}$≥$\frac{2}{1-xy}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{{a}^{2}+1}$+$\frac{{y}^{2}}{(a+4)^{2}}$=1(a>0)的离心率的最大值是$\frac{4\sqrt{17}}{17}$.

查看答案和解析>>

同步练习册答案