精英家教网 > 高中数学 > 题目详情
8.求函数f(x)=ex+2x+3的零点所在的区间,以及零点的个数.

分析 可判断函数f(x)=ex+2x+3在R上都是增函数,再由函数零点的判定定理判断即可.

解答 解:∵y=ex与y=2x+3在R上都是增函数,
∴函数f(x)=ex+2x+3在R上都是增函数,
又∵f(-2)=$\frac{1}{{e}^{2}}$-4+3=$\frac{1}{{e}^{2}}$-1<0,f(0)=1+3=4>0,
∴函数f(x)=ex+2x+3在(-2,0)上有零点,
∴函数f(x)=ex+2x+3有且只有一个零点,在区间(-2,0)上.

点评 本题考查了根的存在性及根的个数的判断,同时考查了函数的性质的判断与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)是奇函数,当x>0时,f(x)=$\frac{x}{1-{3}^{x}}$.
(1)求当x<0时,f(x)的解析式;
(2)解不等式f(x)<-$\frac{x}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$(\frac{1}{2})^{-1+lo{g}_{0.5}4}$的值为(  )
A.6B.$\frac{7}{2}$C.8D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)是定义在R上的奇函数,在(0,+∞)上是增函数,且f(2)=0,则使得f(x)<0的x的取值范围是(0,2)∪(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log2(1-x)-log2(x+a)为奇函数.
(1)求a的值;
(2)判断并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2x,且f(a+2)=8.
(1)求a的值;
(2)设函数g(x)=a-$\frac{2a}{f(x)+1}$,判断g(x)的单调性,并用定义法证明;
(3)若函数h(x)=meax+e2x(其中e=2.718…),x∈[0,ln2]的最小值为0,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.命题p:x∈{x|x2-6x+8=0},命题q:x∈{x|x2+2(a+1)x+a2+3a=0},若¬p是¬q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2asin2x+2sinxcosx-a的图象关于直线x=$\frac{5π}{12}$对称.
(1)求常数a;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,湖岸AE可近似地看成直线,营救人员在A处发现湖中B处有人落水后立即进行营救.己知B到AE的距离为20米,∠BAE=50°.营救人员在岸上的行进速度为7米/秒,在湖中受水流等影响后的实际行进速度为1米/秒,落水人以$\frac{1}{5}$米/秒的速度沿$\overrightarrow{AE}$方向漂流.记营救人员从发现有人落水到接触到落水人的时间为t.
(1)如图2,若营救人员直接从A处入水救人,求出t的值.
(2)如图3,营救人员要用最少的时间救人,沿岸边从A跑到C处再入水救人,在湖中行进速度与$\overrightarrow{AE}$的夹角为α,试用α表示时间r,并求出t的最小值(结果保留根号).

查看答案和解析>>

同步练习册答案