精英家教网 > 高中数学 > 题目详情
20.命题p:x∈{x|x2-6x+8=0},命题q:x∈{x|x2+2(a+1)x+a2+3a=0},若¬p是¬q的充分不必要条件,求a的取值范围.

分析 先求出p,q的等价条件,将¬p是¬q的充分不必要条件转化为q是p的充分不必要条件,建立条件关系,即可求出a的取值范围.

解答 解:由x∈{x|x2-6x+8=0}={2,4},
若?p是?q的充分不必要条件,
由命题的等价性可知:q是p的充分不必要条件,
即q⇒p,且p⇒q不成立,
∴2或4属于q的集合,或者q的集合为空集,
当x=2时,4+4(a+1)+a2+3a=0,解得a=$\frac{-7±\sqrt{17}}{2}$,
当x=4时,16+8(a+1)+a2+3a=0,解得a=-3或a=-8,
但是当a取上面4个值时,q均不为单元数集,
当q的集合为空集时,4(a+1)2-4a2-12a<0,解得a>1,
故a的取值范围为(1,+∞)

点评 本题主要考查充分条件和必要条件的应用,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.数列{an}中,a1=2,a2=3,an=$\frac{{a}_{n-1}}{{a}_{n-2}}$(n∈N*,n≥3),则a2011=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$,则函数z=$\frac{y}{x+1}$的最大和最小值分别为(  )
A.$\frac{1}{2}$,$\frac{3}{2}$B.$\frac{1}{2}$,$\frac{2}{3}$C.$\frac{1}{3}$,$\frac{2}{3}$D.$-\frac{1}{2}$,$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=ex+2x+3的零点所在的区间,以及零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解下列不等式:
(1)|2x+3|≤2;
(2)|x-1|+|x-3|>4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程log2(x+2)=3x的实数根个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设命题p:t2-3t+2<0;命题q:函数f(x)=3x2+2tx+t+$\frac{4}{3}$=0有不等根.
(1)若“p∨q”为假命题,求t的取值范围;
(2)若“p∨q”为真命题,且“p∧q”为假命题,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若方程Ax+By+C=0表示直线,则A,B应满足的条件是(  )
A.A≠0B.B≠0C.A•B≠0D.A2+B2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点P(-3,3),圆C:x2+y2-4x-4y+7=0,直线l0:x-y+2=0
(1)过点P作圆C的切线,求切线的长;
(2)过点P作直线l,与l关于直线l0对称的直线l′和圆C相切,求l的方程.

查看答案和解析>>

同步练习册答案