精英家教网 > 高中数学 > 题目详情
已知虚数z使得z1=
z
1+z2
和z2=
z2
1+z
都为实数,求z.
考点:复数代数形式的乘除运算,复数的基本概念
专题:数系的扩充和复数
分析:利用已知条件,化简通过复数是实数,求出两个复数,z1=-1,z2=-1,然后通过方程求解即可.
解答: 解:z1=
z
1+z2
化为:z1+z1z2=z…①,z2=
z2
1+z
化为:z2+z2z=z2…②,
②代入①可得:z1+z1(z2+z2z)=z,即z1+z1•z2+(z2z1-1)•z=0,
∵z1=
z
1+z2
和z2=
z2
1+z
都为实数.
∴z1z2=1,z1=-1,z2=-1,
∴z2+z+1=0,∴z=
1
2
+
3
2
i
,或者z=
1
2
-
3
2
i
点评:本题考查复数的基本概念,复数方程的运算,这种题目可以出现在高考卷中,只要解题认真就能够得分的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={0,1,3},B={1,2},则A∪B等于(  )
A、{1}
B、{0,2,3}
C、{0,1,2,3}
D、{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mx2-(4+m2)x,其中m∈R且m>0,区间D={x|f(x)<0},给定常数t∈(0,2),当2-t≤m≤2+t时,求区间D的长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,-
1
2
),
b
=(
3
sinx,cos2x),x∈R,设函数f(x)=
a
b

(1)求f(x)的最小正周期和最值;
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,
2
)在椭圆上.
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且
OA
OB
,求△OAB的面积的取值范围.
(3)过M(x1,y1)的直线l1:x1x+2y1y=8
2
与过N(x2,y2)的直线l2:x2x+2y2y=8
2
的交点P(x0,y0)在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求
OG
OH
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>0,求(2x
1
4
+3
3
2
)(2x
1
4
-3
3
2
)-4x-
1
4
x
3
4
-x
1
4
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2-bx,设h(x)=f(x)-g(x)
(1)若g(2)=2,讨论函数h(x)的单调性;
(2)若函数g(x)是关于x的一次函数,且函数h(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

国内跨省市之间邮寄信函,每封信函的质量和对应的邮资如下表:
信函质量(m)/g0<m≤2020<m≤4040<m≤6060<M≤8080<m≤100
邮资(M)/元1.202.403.604.806.00
画出图象,并写出函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线的焦点,点M(
p
2
,p).
(1)设过F且斜率为1的直线L交抛物线C于A、B两点,且|AB|=8,求抛物线的方程.
(2)过点M(
p
2
,p)作倾斜角互补的两条直线,分别交抛物线C于除M之外的D、E两点.求证:直线DE的斜率为定值.

查看答案和解析>>

同步练习册答案