精英家教网 > 高中数学 > 题目详情
1.求证:S△ABC=2R2sinAsinBsinC.(注:R是△ABC外接圆的半径)

分析 利用正弦定理、三角形面积计算公式即可得出.

解答 证明:由正弦定理可得:$\frac{a}{sinA}=\frac{b}{simB}=2R$,
∴a=2RsinA,b=2RsinB,
∴S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×$2RsinA×2RsinB×sinC=2R2sinAsinBsinC.
∴S△ABC=2R2sinAsinBsinC.

点评 本题考查了正弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图是某几何体的三视图,则该几何体的表面积是(  )
A.2$\sqrt{3}$+$\frac{3\sqrt{7}}{2}$B.2$\sqrt{3}$+$\sqrt{15}$C.2$\sqrt{3}$+2$\sqrt{15}$D.2$\sqrt{3}$+3$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P为抛物线y2=-6x上一个动点,Q为圆${x^2}+{(y-6)^2}=\frac{1}{4}$上一个动点,那么点P到点Q的距离与点P到y轴距离之和的最小值是(  )
A.$\frac{{3\sqrt{17}-7}}{2}$B.$\frac{{3\sqrt{17}-4}}{2}$C.$\frac{{3\sqrt{17}-1}}{2}$D.$\frac{{3\sqrt{17}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数Z1=cos23°+isin23°和复数Z2=sin53°+isin37°,则Z1•Z2=(  )
A.$\frac{{\sqrt{3}}}{2}+\frac{1}{2}i$B.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$D.$\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=1,则不等式f(x)<ex的解集为(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(Ⅰ)已知α为第三象限角,f(α)=$\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$.
①化简f(α);②若cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.
(Ⅱ)已知角α满足$\frac{sinα+cosα}{2sinα-cosα}$=2;
①求tanα的值;②求sin2α+2cos2α-sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinx-$\sqrt{3}$cosx+2,记函数f(x)的最小正周期为β,向量$\overrightarrow a=(2,cosα)$,$\overrightarrow b=(1,tan(α+\frac{β}{2}))$,$(0<α<\frac{π}{4})$,且$\overrightarrow a•\overrightarrow b=\frac{7}{3}$
(1)求函数f(x)的单调递减区间;
(2)求$\frac{{2{{cos}^2}α-sin2(α+β)}}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:
①f(8)=f(0)
②f(x)在[0,1]上是增函数;
③f(x)的图象关于直线x=1对称
④f(x)关于点P($\frac{1}{2},0$)对称.
其中正确的判断是①③④.

查看答案和解析>>

同步练习册答案