精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(1-2a)x3+(9a-4)x2+(5-12a)x+4a(a∈R).
(1)当a=0时,求函数在区间[0,2]上的最大值;
(2)若函数f(x)在区间[0,2]上的最大值为2,求a的取值范围.
考点:二次函数在闭区间上的最值,二次函数的性质
专题:综合题,函数的性质及应用
分析:(1)先求导数f′(x),在函数的定义域内解不等式f′(x)>0,f′(x)<0可求得单调区间,由单调性可求最大值;
(2)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,建立等量关系,求出参数a的范围即可.
解答: 解:(1)当a=0时,f(x)=x3-4x2+5x,f′(x)=3x2-8x+5=(3x-5)(x-1),
由f′(x)>0,得0≤x<1或
5
3
<x≤2;由f′(x)<0,得1<x<
5
3

∴f(x)在[0,1],[
5
3
,2]上单调递增;在[1,
5
3
]上单调递减.
又f(1)=f(2)=2,
∴函数在[0,2]上的最大值为2.
(2)一方面由题意,得
f(0)≤2
f(1)≤2
f(2)≤2
,即0≤a≤
1
2

另一方面,当0≤a≤
1
2
时,f(x)=(-2x3+9x2-12x+4)a+x3-4x2+5x,
令g(a)=(-2x3+9x2-12x+4)a+x3-4x2+5x,则
g(a)≤max{g(0),g(
1
2
)}
=max{x3-4x2+5x,
1
2
(-2x3+9x2-12x+4)+x3-4x2+5x}
=max{x3-4x2+5x,
1
2
x2-x+2},
f(x)=g(a)≤max{x3-4x2+5x,
1
2
x2-x+2},
又0≤x≤2时,max{x3-4x2+5x}=2,max{
1
2
x2-x+2}=2,且f(2)=2,
所以当0≤a
1
2
时,f(x)在区间[0,2]上的最大值是2.
综上,所求a的取值范围是0≤a
1
2
点评:本题主要考查了利用导数研究函数的最值,以及利用导数求闭区间上函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线被圆C:x2+y2-6x=0所截得的弦长等于2
5
,则该双曲线的离心率等于(  )
A、
3
2
B、
3
5
5
C、
9
4
D、
9
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>O b>0,下列不等式中正确的个数为.
(1)a2+b2≥2|ab|(2)
a
b
+
b
a
≥2 (3)
a2
b
+
b2
a
≥a+b (4)
1
b
+
1
a
4
a+b
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=b•ln(x+1)+x2其中b≠0.
(1)若函数f(x)在定义域上单调递增,求b的取值范围;
(2)若函数f(x)有极值点,写出b的取值范围及函数f(x)的极值点;
(3)证明对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=x2+x丨x-a丨+1的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2-x(a∈R).
(Ⅰ)当a=
1
2
时,求f(x)的单调区间;
(Ⅱ)若x>0时,f(x)>0,求证:a<
12
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>-2,求函数y=x+
1
x+2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AP=2AB=2BC,D是底边AP的中点,E.F、G分别为PC、PD、CB的中点,将△PCD沿CD折起,使点P位于点P′,且P′D⊥平面ABCD,得折叠后如图2的几何图形.
(Ⅰ)求证:平面ABP′∥平面EFG;
(Ⅱ)求二面角G-EF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均不相等的等差数列{an}的前8项和为S8=44,且a3、a5、a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
1
anan+1
}的前n项和Tn

查看答案和解析>>

同步练习册答案