精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a=2,A=45°,若此三角形有两解,则b的取值范围是(
A.(2,2
B.(2,+∞)
C.(﹣∞,2)
D.(

【答案】A
【解析】解:∵a=2,A=45°, ∴由正弦定理可得: ,解得b=2 sinB,
∵B+C=180°﹣45°=135°,由B有两个值,则这两个值互补,
若B≤45°,
则和B互补的角大于135°,这样A+B>180°,不成立,
∴45°<B<135°,
又若B=90°,这样补角也是90°,一解,
所以 <sinB<1,
b=2 sinB,
所以2<b<2
则b的取值范围是为:(2,2 ).
故选:A.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=3,an+1﹣3an=3n(n∈N*),数列{bn}满足bn=
(Ⅰ)求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱柱ABC﹣A1B1C1的棱长都为2,E,F,G为 AB,AA1 , A1C1的中点,则B1F 与面GEF成角的正弦值( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( sin ,1), =(cos ,cos2 ).
(Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)记f(x)= ,在△ABC中,A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验。甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良。

根据以上信息填好下列联表,并判断出有多大的把握认为学生成绩优良与班级有关?

(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率。

(以下临界值及公式仅供参考

, )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(1+x)﹣log2(1﹣x),g(x)=log2(1+x)+log2(1﹣x).
(1)判断函数f(x)奇偶性并证明;
(2)判断函数f(x)单调性并用单调性定义证明;
(3)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为,其离心率为,又抛物线在点处的切线恰好过椭圆的一个焦点.

(1)求椭圆的方程;

(2)过点斜率为的直线交椭圆两点,直线的斜率分别为,是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是(  )

A.该几何体是由两个同底的四棱锥组成的几何体
B.该几何体有12条棱、6个顶点
C.该几何体有8个面,并且各面均为三角形
D.该几何体有9个面,其中一个面是四边形,其余均为三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序,则输出的s值等于

查看答案和解析>>

同步练习册答案