分析 取BC中点O,B1C1中点P,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出结果.
解答
解直棱柱ABC-A1B1C1中,AB=AC=2,AA1=BC=2$\sqrt{3}$,
取BC中点O,B1C1中点P,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,
∵E是AA1中点,D是AC的中点,
∴A(1,0,0),C(0,-$\sqrt{3}$,0),D($\frac{1}{2},-\frac{\sqrt{3}}{2}$,0),E(1,0,$\sqrt{3}$),B1(0,$\sqrt{3}$,2$\sqrt{3}$),
∵M是BB1上一点,∴设M(0,$\sqrt{3}$,t),(0$≤t≤2\sqrt{3}$),
$\overrightarrow{C{B}_{1}}$=(0,2$\sqrt{3}$,2$\sqrt{3}$),$\overrightarrow{CE}$=(1,$\sqrt{3},\sqrt{3}$),$\overrightarrow{DM}$=(-$\frac{1}{2}$,$\frac{3\sqrt{3}}{2}$,t),
设平面B1CE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=2\sqrt{3}y+2\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{CE}=x+\sqrt{3}y+\sqrt{3}z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-1),
∵DM∥平面B1CE,
∴$\overrightarrow{n}•\overrightarrow{DM}$=$\frac{3\sqrt{3}}{2}$-t=0,
解得t=$\frac{3\sqrt{3}}{2}$.
∴BM=$\frac{3\sqrt{3}}{2}$,MB1=2$\sqrt{3}-\frac{3\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
∴$\frac{\frac{3\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$=3.
故答案为:3.
点评 本题考查空间中两线段比值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com