精英家教网 > 高中数学 > 题目详情
已知三棱锥S-ABC是三条侧棱两两垂直的三棱锥,O是底面△ABC内的一点,则G=tan∠OSA•tan∠OSB•tan∠OSC的最小值是
 
考点:棱锥的结构特征
专题:空间位置关系与距离
分析:过O分别作与SA、SB、SC平行的平面交三棱锥的侧棱,侧面于各点,补形得到以SO为对角线的长方体,利用长方体体对角线的平方等于过一个顶点的三条棱的平方和得到cos2α+cos2β+cos2γ=1,移向变形得到sin2α=1-cos2α=cos2β+cos2γ≥2cosβcosγ及另外类似的两个式子,作积后整理即可得到答案.
解答: 解:如图,设∠OSA=α,∠OSB=β,∠OSC=γ
过O分别作与SA、SB、SC平行的平面交三棱锥的侧棱,侧面于如图所示的点,
得到的图形是以SO为对角线的长方体,
则cos2α+cos2β+cos2γ=
SD2
SO2

所以sin2α=1-cos2α=cos2β+cos2γ≥2cosβcosγ.
同理sin2β≥2cosαcosγ,sin2γ≥2cosαcosβ.
则sin2α•sin2β•sin2γ≥8cos2α•cos2β•cos2γ.
所以G=tan∠OSA•tan∠OSB•tan∠OSC≥2
2

故答案为2
2
点评:本题考查了棱锥的结构特征,考查了同角三角函数的基本关系式,解答的关键是想到补形,把零散的角集中到一个长方体中解决,此题属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈R,|x|+x2>0“,命题q:“a+c>b+d“是a>b且c>d的充分不必要条件”,则下列结论正确的是(  )
A、命题“p∧q”是真命题
B、命题“(¬p)∧q”是真命题
C、命题“p∧(-q)”是真命题
D、命题“p∨q”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,120°的二面角的棱上有A,B两点,AC,BD分别是在这个二面角的两个半平面内垂直于AB的线段,且AB=4cm,AC=6cm,BD=8cm,则CD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
a2
+
y2
b2
=1
(a>b>0),左、右焦点分别是F1,F2,若椭圆C上的点P(1,
3
2
)到F1,F2的距离和等于4.
(Ⅰ)写出椭圆C的方程和焦点坐标;
(Ⅱ)设点Q是椭圆C的动点,求线段F1Q中点T的轨迹方程;
(Ⅲ)直线l过定点M(0,2),且与椭圆C交于不同的两点A,B,若∠AOB为锐角(O为坐标原点),求直线l的斜率k0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+2y+2=0与直线3x-y-2=0平行,则a的值为(  )
A、-6B、6C、-3D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C1:x2+y2-2x=0与直线l:y-mx-m=0有两个不同的交点,则实数m的取值范围是(  )
A、(-
3
3
3
3
B、(-
3
3
,0)(0,
3
3
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)(
3
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.
(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥P-ABC中PA⊥底面ABC,∠ACB=90°,且PA=AC,则二面角P-BC-A的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=lnx+x-3的零点所在的区间是(n,n+1),则正整数n=
 

查看答案和解析>>

同步练习册答案