精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0, ).

(1)求椭圆C的标准方程;

(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于PQ两点,求线段PQ的长.

【答案】(1) (2)

【解析】试题分析: 由题意可得椭圆的焦点在轴上,设椭圆方程为

,由题意可得求得,即可得到所求椭圆方程。

求出直线的方程,代入椭圆方程,设 ,运用韦达定理,由弦长公式计算即可得到所求值。

解析(1)由题意可知椭圆焦点在x轴上,设椭圆方程为(ab0),

由题意可知a=3,b=

∴椭圆的标准方程为=1.

(2)直线l的方程为y=x+2,

联立方程组,得14x2+36x﹣9=0,

P(x1,y1),Q(x2,y2),则x1+x2=﹣,x1x2=﹣

∴|PQ|=|x1﹣x2|===

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:

(1)请画出上表数据的散点图;并指出是否线性相关;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)已知该厂技术改造前吨甲产品能耗为吨标准煤,试根据求出的线性回归方程,预测生产吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:用最小二乘法求线性回归方程系数公式 ,, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,点PG分别是AD,EF的中点,已知平面ABC,AD=EF=3,DE=DF=2.

(Ⅰ)求证:DG平面BCEF

(Ⅱ)求PE与平面BCEF 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为,动点在棱上,动点分别在棱上,若大于零),则四面体的体积( ).

A. 都有关 B. 有关,与无关

C. 有关,与无关 D. 有关,与无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,当k为何值时,
(1) 垂直?
(2) 平行?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.

(1)若出现故障的机器台数为,求的分布列;

(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?

(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于为合格品,小于为次品.现随机抽取这种芯片共件进行检测,检测结果统计如表:

测试指标

芯片数量(件)

已知生产一件芯片,若是合格品可盈利元,若是次品则亏损元.

(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产件芯片所获得的利润不少于元的概率.

(Ⅱ)记为生产件芯片所得的总利润,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市共有初中学生270000人,其中初一年级,初二年级,初三年级学生人数分别为99000,90000,81000,为了解该市学生参加“开放性科学实验活动”的意向,现采用分层抽样的方法从中抽取一个容量为3000的样本,那么应该抽取初三年级的人数为(
A.800
B.900
C.1000
D.1100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是以为中心的菱形, 底面上一点,且.

1)证明: 平面

2)若,求四棱锥的体积.

查看答案和解析>>

同步练习册答案