精英家教网 > 高中数学 > 题目详情
1.若$\frac{a+i}{1+2i}=ti$(i为虚数单位,a,t∈R),则t+a等于(  )
A.-1B.0C.1D.2

分析 利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得t,a的值,则答案可求.

解答 解:∵$\frac{a+i}{1+2i}=\frac{(a+i)(1-2i)}{(1+2i)(1-2i)}=\frac{a+2+(1-2a)i}{5}$=$\frac{a+2}{5}+\frac{1-2a}{5}i=ti$,
∴$\left\{\begin{array}{l}{\frac{a+2}{5}=0}\\{\frac{1-2a}{5}=t}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-2}\\{t=1}\end{array}\right.$.
则t+a=-1,
故选:A.

点评 本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.一个四棱柱的三视图如图所示,若该四棱柱的所有顶点都在同一球面上,则这个球的表面积为(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m=a+blnb,n=b+blna,若a>b>0,则m,n的大小关系是(  )
A.m>nB.m<nC.m=nD.大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,内角A、B、C所对的边分别为a,b,c,且b=$\sqrt{3}$,$\sqrt{3}$sinC=(sinA+$\sqrt{3}$cosA)sinB,则AC边上的高的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲、乙两名游客来厦门旅游,计划分别从鼓浪屿、曾厝垵、植物园、南普陀四个旅游景点中选取3个景点参观浏览,则两人选取的景点中有且仅有两个景点相同的概率为(  )
A.$\frac{3}{16}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线C:y2=4x,过焦点F且斜率为$\sqrt{3}$的直线与C相交于P,Q两点,且P,Q两点在准线上的投影分别为M,N两点,则S△MFN=(  )
A.$\frac{8}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.$\frac{16}{3}$D.$\frac{{16\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知{an}是等比数列,a2=1,a5=$\frac{1}{8}$,设Sn=a1a2+a2a3+…+anan+1(n∈N*),λ为实数.若对?n∈N*都有λ>Sn成立,则λ的取值范围是[$\frac{8}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,双曲线以A,B为焦点,且经过C,D两点,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在边长为2的正方形ABCD中,M是AB的中点,则过C,M,D三点的抛物线与CD围成阴影部分,在正方形ABCD中任取一点P,则点P恰好取自阴影部分的概率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案