【题目】已知直线
过点
,圆
:
,直线
与圆
交于
两点.
(
) 求直线
的方程;
(
)求直线
的斜率
的取值范围;
(Ⅲ)是否存在过点
且垂直平分弦
的直线
?若存在,求直线
斜率
的值,若不存在,请说明理由.
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)见解析.
【解析】试题分析:(
)求出圆的圆心坐标,利用截距方程式求直线
的方程;(Ⅱ)法1:联立直线与圆的方程,通过判别式求解
的范围即可;法2:利用点到直线的距离公式与半径的关系,转化求解直线
的斜率
的取值范围;(Ⅲ)求出直线
的斜率,利用垂直关系,判断是否存在直线方程.
试题解析:(
)设圆
,圆心为
,
故直线
的方程为
,即
.
(Ⅱ)法1:直线
的方程为
,则
由
得![]()
由
得![]()
故
.
法2:直线
的方程为
,即
,
圆心为
,圆的半径为1则圆心到直线的距离![]()
因为直线与有交于
两点,故
,故![]()
(Ⅲ)假设存在直线
垂直平分于弦
,此时直线
过
,
,则
,故
的斜率
,由(
)可知,不满足条件
所以,不存在存在直线
垂直于弦
。
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,一个焦点坐标是
,离心率为
.
(1)求椭圆的标准方程;
(2)过
作直线交椭圆于
两点,
是椭圆的另一个焦点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足:
,
,
.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,且满足
,试确定
的值,使得数列
为等差数列;
(3)将数列
中的部分项按原来顺序构成新数列
,且
,求证:存在无数个满足条件的无穷等比数列
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,
,则下列说法正确的是( )
A. 把
上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线![]()
B. 把
上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线![]()
C. 把曲线
向右平移
个单位长度,再把得到的曲线上各点横坐标缩短到原来的
,纵坐标不变,得到曲线![]()
D. 把曲线
向右平移
个单位长度,再把得到的曲线上各点横坐标缩短到原来的
,纵坐标不变,得到曲线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
极坐标系的极点为直角坐标系
的原点,极轴为
轴的正半轴,两神坐标系中的长度单位相同.已知曲线
的极坐标方程为
,
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)在曲线
上求一点,使它到直线
:
(
为参数)的距离最短,写出
点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数),设
与
的交点为
,当
变化时,
的轨迹为曲线
.
(1)写出
的普遍方程及参数方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,设曲线
的极坐标方程为
,
为曲线
上的动点,求点
到
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x2+alnx.
(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;
(2)若a=1,求函数f(x)在[1,e]上的最值;
(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=
x3的图象下方.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com