精英家教网 > 高中数学 > 题目详情
20.函数f(x)=$\left\{\begin{array}{l}{{a}^{x},(x>1)}\\{(4-\frac{a}{2})x+5,(x≤1)}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是(  )
A.(4,+∞)B.[6,8)C.(6,8)D.(1,8)

分析 由任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,得到函数f(x)单调递增,从而列出方程组,解方程组则可得答案.

解答 解:∵对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,
∴函数f(x)单调递增,
又函数f(x)=$\left\{\begin{array}{l}{{a}^{x},(x>1)}\\{(4-\frac{a}{2})x+5,(x≤1)}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a>1}\\{4-\frac{a}{2}>0}\\{4-\frac{a}{2}+5≤a}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a>1}\\{a<8}\\{a≥6}\end{array}\right.$.
∴实数a的取值范围是:6≤a<8.
故选:B.

点评 本题考查了函数的单调性,本题的关键是列出方程组从而求解,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.对于函数y=sin(2x-$\frac{π}{3}$),下列说法正确的是(  )
A.函数的最小正周期为$\frac{π}{2}$B.函数关于($\frac{π}{6}$,0)中心对称
C.函数在-$\frac{π}{12}$处取得最大值D.函数在(-$\frac{π}{12}$,$\frac{π}{6}$)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知过点A(a,1)可以作两条直线与圆C:(x-1)2+y2=5相切,则实数a的取值范围是(  )
A.(-∞,-1)B.(-1,3)C.[3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,方程y=ax+$\frac{1}{a}$表示的直线可能是 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{m}$=(sin$\frac{x}{3}$,-1),$\overrightarrow{n}$=($\frac{\sqrt{3}}{2}$A,$\frac{1}{2}$Acos$\frac{x}{3}$)(A>0),函数f(x)=$\overrightarrow{n}$•$\overrightarrow{m}$的最大值为2.
(1)求f(x)最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$),f(3β+2π)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF是正三角形,EF∥AB,EF=2,则该多面体的体积为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x2+x+y)4的展开式中,x3y2的系数是12.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知过点$P({-2\sqrt{3},-2})$的直线l与圆O:x2+y2=4有公共点,则直线l斜率的取值范围是$[{0,\sqrt{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图的多面体中,ABCD为矩形,且AD⊥平面ABE,AE=EB=BC=2,F为CE的中点,AE⊥BE.
(1)求证:AE∥平面BFD;
(2)求三棱锥E-BDC的体积.

查看答案和解析>>

同步练习册答案