精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-x2.
证明:存在x0,使f(x0)=x0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,某人想制造一个支架,它由四根金属杆构成,其底端三点均匀地固定在半径为的圆上(圆在地面上),三点相异且共线,与地面垂直. 现要求点到地面的距离恰为,记用料总长为,设

(1)试将表示为的函数,并注明定义域;
(2)当的正弦值是多少时,用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.
设常数,函数
(1)若=4,求函数的反函数
(2)根据的不同取值,讨论函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x+ (x≠0,a∈R).
(1)当a=4时,证明:函数f(x)在区间[2,+∞)上单调递增;
(2)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距.
(1)分别判断函数是否存在长距与短距,若存在,请求出;
(2)求证:指数函数的短距小于1;
(3)对于任意是否存在实数,使得函数的短距不小于2且长距不大于4.若存在,请求出的取值范围;不存在,则说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数 f (x) 在 (-¥,0)∪(0,+¥) 上有意义,且在 (0,+¥) 上是增函数,f (1) = 0,又函数 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.为常数且
(1)当时,求
(2)若满足,但,则称的二阶周期点.证明函数有且仅有两个二阶周期点,并求二阶周期点
(3)对于(2)中的,设,记的面积为,求在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数,在处取最小值.
(1)求的值;
(2)在中,分别是的对边,已知,求角

查看答案和解析>>

同步练习册答案