精英家教网 > 高中数学 > 题目详情
5.某个四面体的三视图如图(其中三个正方形的边长均为1)所示,则该几何体的体积为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

分析 由三视图可知:该几何体为正方体的内接正四面体

解答 解:由三视图可知:该几何体为正方体的内接正四面体,图中红颜色部分.
该几何体的体积V=13$-4×\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{1}{3}$.
故选:B

点评 本题考查了正四面体的三视图、正方体的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的奇函数,且f(x-2)=f(x+2),当0<x<2时,f(x)=1-log2(x+1),则当0<x<4时,不等式(x-2)f(x)>0的解集是(  )
A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A1,A2分别为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得${k_{PA_1}}•{k_{P{A_2}}}$>-$\frac{1}{2}$,则该椭圆的离心率的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{{\sqrt{2}}}{2}}$)C.$({\frac{{\sqrt{2}}}{2},1})$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,AB是圆O的直径,C、F为圆O上的点,CA是∠BAF的角平分线,CD与圆O切于点C且交AF的延长线于点D,CM⊥AB,垂足为点M.若圆O的半径为1,∠BAC=30°,则DF•AM=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax,g(x)=lnx,其中a∈R,(e≈2.718).
(1)若函数F(x)=f(x)-g(x)有极值1,求a的值;
(2)若函数G(x)=f(sin(x-1))-g(x)在区间(0,1)上为减函数,求a的取值范围;
(3)证明:$\sum_{k=1}^n$sin$\frac{1}{{{{(k+1)}^2}}}}$<ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,若m项依次构成首项为1,公差为-2的等差数列,第m+1项至第2m项依次构成首项为1,公比为$\frac{1}{2}$的等比数列.其中m≥3,m∈N*
(1)当1≤n≤2m时,求an
(2)若对任意的n∈N*,都有an+2m=an,设数列{an}的前n项和为Sn,求证:S4m+3≤-$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,若|AF|=5,则|BF|=(  )
A.$\frac{1}{4}$B.1C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an},其中an=2n+3n,且数列{an+1+λan)(λ为常数)为等比数列,求常数λ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设$f(x)=\left\{\begin{array}{l}1-cos\frac{πx}{2},x∈[0,1]\\ \frac{1}{x},x∈(1,e]\end{array}\right.$(其中e为自然对数的底数),则y=f(x)的图象与直线y=0,x=e所围成图形的面积为2-$\frac{2}{π}$.

查看答案和解析>>

同步练习册答案