精英家教网 > 高中数学 > 题目详情
13.如图,AB是圆O的直径,C、F为圆O上的点,CA是∠BAF的角平分线,CD与圆O切于点C且交AF的延长线于点D,CM⊥AB,垂足为点M.若圆O的半径为1,∠BAC=30°,则DF•AM=$\frac{3}{4}$.

分析 首先由CA是∠BAF的角平分线推理出OC∥AD,然后由圆的切割线定理得到DC=CM,求出DF•AM的值.

解答 解:连接OC,则有∠OAC=∠OCA.
又CA是∠BAF的角平分线,∠OAC=∠FAC,所以∠FAC=∠ACO,所以OC∥AD.
因为DC是圆O的切线,所以CD⊥OC,则CD⊥AD.
由题意知△AMC≌△ADC,所以DC=CM,DA=AM.
因为DC是圆O的切线,由切割线定理,得DC2=DF•DA=DF•AM=CM2
在Rt△ABC中,AC=AB•cos∠BAC=$2cos{30°}=\sqrt{3}$,
所以$CM=\frac{1}{2}AC=\frac{{\sqrt{3}}}{2}$.
于是$DF•AM=C{M^2}=\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查平面几何证明中圆的基本性质的应用,考查切割线定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知抛物线y=x2,点A、B的坐标分别为(2,-1)、(3,1),在抛物线上求一点P使△ABP的面积最小并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.袋内有红、白、黑球各3,2,1个,从中任取两个,则互斥而不对立的事件是(  )
A.至少有一个白球;都是白球B.至少一个白球;红,黑球各一个
C.至少有一个白球;至少有一个红球D.恰有一个白球;一个白球一个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求f(x)=3cos(2x+$\frac{π}{4}$)-1的最大值及取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{alnx+b}{x}$(其中a≤2且a≠0),函数f(x)在点(1,f(1))处的切线过点(3,0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)与函数g(x)=a+2-x-$\frac{2}{x}$的图象在(0,2]有且只有一个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的右焦点F作斜率k=-1的直线交椭圆于A,B两点,且$\overrightarrow{OA}+\overrightarrow{OB}与\overrightarrow a=(1,\frac{1}{3})$共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积S△AOB=$\frac{{\sqrt{3}}}{2}$时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某个四面体的三视图如图(其中三个正方形的边长均为1)所示,则该几何体的体积为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=f(x)(x∈(-∞,-2)∪(2,+∞)),在其图象上任取一点P(x,y)都满足方程x2-4y2=4.
①函数y=f(x)一定具有奇偶性;
②函数y=f(x)在(-∞,-2)是单调函数;
③?x0∈(-∞,-2)∪(2,+∞),使x<2f(x);
④?x∈(-∞,-2)∪(2,+∞),使|x|>2f(x);
以上说法正确的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线与直线x+3y+2=0垂直,执行如图所示的程序框图,输出的k值是6.

查看答案和解析>>

同步练习册答案