精英家教网 > 高中数学 > 题目详情
5.已知集合M={1,2,3,4,5},N={0,2,4},P=M∩N,则P的子集共有(  )
A.2个B.4个C.6个D.8个

分析 由M与N,求出两集合的交集P,找出P子集个数即可.

解答 解:∵M={1,2,3,4,5},N={0,2,4},
∴P=M∩N={2,4},
则P的子集共有22=4个,
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知直线2x+y-10=0过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦点且与该双曲线的一条渐近线垂直,则该双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{20}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{20}=1$D.$\frac{x^2}{9}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC的内切圆与三边AB,BC,CA的切点分别为D,E,F,已知B(-$\sqrt{2}$,0),C($\sqrt{2}$,0).内切圆圆心I(1,t),t≠0,设点A的轨迹为R,求R的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,D为边BC上一点,tan∠BAD=$\frac{1}{3}$,tan∠CAD=$\frac{1}{2}$,AB=$\sqrt{2}$AC,BC=3,则AD=(  )
A.$\frac{7}{2}$B.$\frac{{3\sqrt{5}}}{2}$C.2$\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“角α为钝角”是“sinα>0且cosα<0”的(  )条件.
A.充要B.必要不充分
C.充分不必要D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={x|-2≤x≤1},B={x|x<0},则A∪B=(  )
A.(-∞,0)B.(-∞,1]C.[-2,0)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U=R,集合A={x|x2≥4},集合B={x|x>1},则∁U(A∪B)=(  )
A.{x|-2<x<2}B.{x|1≤x≤2}C.{x|-2<x≤1}D.{x|-2≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{1-x,x≤0}\end{array}\right.$,则f[f(-1)]的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点O为坐标原点,点P(0,$\sqrt{2}$b),点Q为椭圆E上在第一象限内的点.
(1)若△POQ为正三角形,求椭圆E的离心率;
(2)设点A(a,0),B(0,-b),若直线PQ与椭圆E有唯一的公共点.证明:OQ∥AB.

查看答案和解析>>

同步练习册答案