| A. | $\frac{7}{2}$ | B. | $\frac{{3\sqrt{5}}}{2}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{10}$ |
分析 由两角和与差的正切函数推知∠BAC=45°,结合余弦定理求得AC的长度,由此推知△ABC为直角三角形;然后在直角△ACD中利用勾股定理来求AD的长度即可.
解答
解:如图,∵tan∠BAD=$\frac{1}{3}$,tan∠CAD=$\frac{1}{2}$,
∴tan∠BAC=tan(∠BAD+∠CAD)=$\frac{tan∠BAD+tan∠CAD}{1-tan∠BAD•tan∠CAD}$=$\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}×\frac{1}{2}}$=1,
∵0<∠BAC<180°,
∴∠BAC=45°.
∴cos∠BAC=$\frac{A{C}^{2}+A{B}^{2}-B{C}^{2}}{2AC•AB}$=$\frac{A{C}^{2}+2A{C}^{2}-9}{2×AC×\sqrt{2}AC}$=$\frac{\sqrt{2}}{2}$,则AC=3,
∴AC=BC=3,
∴∠BAC=∠B=45°,
∴∠C=90°.
∴tan∠CAD=$\frac{CD}{AC}$=$\frac{CD}{3}$=$\frac{1}{2}$,
∴CD=$\frac{3}{2}$,
∴AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\frac{3\sqrt{5}}{2}$.
故选:B.
点评 本题考查了两角和与差的正切函数,余弦定理以及勾股定理,本题难度不大,熟记公式即可解答该题.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 白酒品种 | 高粱(吨) | 大米(吨) | 小麦(吨) |
| A | 9 | 3 | 4 |
| B | 4 | 10 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+2$\sqrt{2}$ | B. | 3+2$\sqrt{2}$ | C. | 3-2$\sqrt{2}$ | D. | 2$\sqrt{2}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com