【题目】已知函数f(x)=m6x﹣4x , m∈R.
(1)当m= 时,求满足f(x+1)>f(x)的实数x的范围;
(2)若f(x)≤9x对任意的x∈R恒成立,求实数m的范围.
【答案】
(1)解:当m= 时,f(x+1)>f(x)
即为 6x+1﹣4x+1> 6x﹣4x,
化简得,( )x< ,
解得x>2.
则满足条件的x的范围是(2,+∞)
(2)解:f(x)≤9x对任意的x∈R恒成立即为m6x﹣4x≤9x,
即m≤ =( )﹣x+( )x对任意的x∈R恒成立,
由于( )﹣x+( )x≥2,当且仅当x=0取最小值2.
则m≤2.
故实数m的范围是(﹣∞,2]
【解析】(1)当m= 时,f(x+1)>f(x)即可化简得,( )x< ,由单调性即可得到;(2)f(x)≤9x对任意的x∈R恒成立即m≤ =( )﹣x+( )x对任意的x∈R恒成立,运用基本不等式即可得到最小值,令m不大于最小值即可.
科目:高中数学 来源: 题型:
【题目】如图,某学校有一块直角三角形空地,其中, , ,该校欲在此空地上建造一平行四边形生物实践基地,点分别在上.
(1)若四边形为菱形,求基地边的长;
(2)求生物实践基地的最大占地面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数在其定义域内存在实数,使得成立,则称函数为“可拆分函数”.
(1)试判断函数是否为“可拆分函数”?并说明你的理由;
(2)证明:函数为“可拆分函数”;
(3)设函数为“可拆分函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心为,直线.
(1)求圆心的轨迹方程;
(2)若,求直线被圆所截得弦长的最大值;
(3)若直线是圆心下方的切线,当在上变化时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:分).
学生编号 成绩 | 1 | 2 | 3 | 4 | 5 |
总成绩/x | 482 | 383 | 421 | 364 | 362 |
数学成绩/y | 78 | 65 | 71 | 64 | 61 |
(1)求数学成绩与总成绩的回归直线方程.
(2)根据以上信息,如果一个学生的总成绩为450分,试估计这个学生的数学成绩;
(3)如果另一位学生的数学成绩为92分,试估计其总成绩是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在两个正实数m、n,使得等式a(lnn﹣lnm)(4em﹣2n)=3m成立(其中e为自然对数的底数),则实数a的取值范围是( )
A.(﹣∞,0)
B.(0, ]
C.[ ,+∞)
D.(﹣∞,0)∪[ ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,已知点A(1,0,B(-1,0),圆的方程为,点为圆上的动点.
(1)求过点的圆的切线方程.
(2)求的最大值及此时对应的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: ,圆O:x2+y2=a2与y轴正半轴交于点B,过点B的直线与椭圆E相切,且与圆O交于另一点A,若∠AOB=60°,则椭圆E的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com