精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的首项a1=1,前n项和为Sn , 且满足(n+1)an=2Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=ancos(πan),求数列{bn)的前n项和Tn

【答案】
(1)解:∵(n+1)an=2Sn,∴(n+2)an+1=2Sn+1

两式相减,得(n+1)an=nan+1,即 =

∴an=

= ×1=n


(2)解:∵bn=ancos(πan)=ncosnπ=n(﹣1)n

∴Tn=1×(﹣1)+2×(﹣1)2+3×(﹣1)3+4×(﹣1)4+…+n×(﹣1)n,①

﹣Tn=1×(﹣1)2+2×(﹣1)3+3×(﹣1)4+4×(﹣1)5+…+n×(﹣1)n+1.②

①﹣②,整理得

2Tn=﹣1+(﹣1)2+(﹣1)3+(﹣1)4+…+(﹣1)n﹣n(﹣1)n+1= ﹣﹣n(﹣1)n+1

∴Tn= (﹣1)n


【解析】解法2:bn=ancos(πan)=ncosnπ=n(﹣1)n=

当n为偶数时,Tn=﹣1+2﹣3+4﹣5+6…﹣(n(n﹣1)﹣n= ﹣n=﹣

∴Tn= (﹣1)n
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 是单调递增的等差数列,首项 ,前 项和为 ,数列 是等比数列,首项 ,且 .
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木 的高度 ,垂直放置的标杆 的高度 ,仰角 三点共线),试根据上述测量方案,回答如下问题:

(1)若测得 ,试求 的值;
(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离 (单位:)使 之差较大时,可以提高测量的精确度.若树木的实际高为 ,试问 为多少时, 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个科研小组有4位男组员和2位女组员,其中一位男组员和一位女组员不会英语,其他组员都会英语,现在要用抽签的方法从中选出两名组员组成一个科研攻关小组.
(Ⅰ)求组成攻关小组的成员是同性的概率;
(Ⅱ)求组成攻关小组的成员中有会英语的概率;
(Ⅲ)求组成攻关小组的成员中有会英语并且是异性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名六年级学生进行了问卷调查得到如图联表.且平均每天喝500ml以上为常喝,体重超过50kg为肥胖.已知在全部100人中随机抽取1人,抽到肥胖的学生的概率为0.8.

常喝

不常喝

合计

肥胖

60

不肥胖

10

合计

100


(1)求肥胖学生的人数并将上面的列联表补充完整;
(2)是否有95%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:x2=

P(x2≥x0

0.05

0.025

0.010

0.005

0.001

x0

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,解关于x的不等式(a﹣1)x2+(2a+3)x+a+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin(2x+ )图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移 个单位得到函数g(x)的图象.在g(x)图象的所有对称中心中,离原点最近的对称中心为( )
A.(﹣ ,0)
B.( ,0)
C.(﹣ ,0)
D.( ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则下列说法正确的是( )

A.平均数为62.5
B.中位数为62.5
C.众数为60和70
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求△ABC的面积.

查看答案和解析>>

同步练习册答案