精英家教网 > 高中数学 > 题目详情
2.一个袋子中有形状大小完全相同的3个黑球和4个白球.
(1)从中任意摸出一球,用0表示摸出黑球,用1表示摸出白球,即X=$\left\{\begin{array}{l}{0,摸出黑球}\\{1,摸出白球}\end{array}\right.$,求X的分布列.
(2)从中任意摸出两个球,用“ξ=0”表示两个球全是黑球,用“ξ=1”两个球不全是黑球,求ξ的分布列.

分析 (1)由已知得X符合两点分布,且P(X=0)=$\frac{3}{7}$,P(X=1)=$\frac{4}{7}$,由此能求出X的分布列.
(2)由已知ξ符合两点分布,利用组合娄公式分别求出P(ξ=0),P(ξ=1).由此能求出ξ的分布列.

解答 解:(1)∵一个袋子中有形状大小完全相同的3个黑球和4个白球.
从中任意摸出一球,用0表示摸出黑球,用1表示摸出白球,即X=$\left\{\begin{array}{l}{0,摸出黑球}\\{1,摸出白球}\end{array}\right.$,
∴X符合两点分布,且P(X=0)=$\frac{3}{7}$,P(X=1)=$\frac{4}{7}$,
∴X的分布列如下:

 X 0 1
 P $\frac{3}{7}$ $\frac{4}{7}$
(2)从中任意摸出两个球,用“ξ=0”表示两个球全是黑球,用“ξ=1”两个球不全是黑球,
∴ξ符合两点分布,
P(ξ=0)=$\frac{{C}_{3}^{2}}{{C}_{7}^{2}}$=$\frac{1}{7}$,
P(ξ=1)=$\frac{{C}_{3}^{0}{C}_{4}^{2}+{C}_{3}^{1}{C}_{4}^{1}}{{C}_{7}^{2}}$=$\frac{6}{7}$.
∴ξ的分布列为:
 ξ 0 1
 P $\frac{1}{7}$ $\frac{6}{7}$

点评 本题考查离散型随机变量的分布列的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.将3本不同的数学书和2本不同的语文书在书架上排成一行,若2本语文书相邻排放,则不同的排放方案共有48种(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线x2-3y2=-1的两条渐近线的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.4名男生和4名女生各自平均分成两组到4所不同的学校去学习,则有不同的分配方案共288种(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一座底是长方形、屋顶是正三棱柱的仓库,尺寸如图标注(单位:米),求这仓库的容积(墙厚略去不计).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在正方体ABCD-A1B1C1D1中,AB=1,点P为BD1上一点,平面α满足:点P∈平面α,直BD1⊥平面α,设以B为顶点,以连接平面α与正方体棱的交点为底面的几何体的体积为V,则V的最大值为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{3}{16}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为(  )
A.72B.108C.180D.216

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在棱长为2的正方体ABCD-A′B′C′D′中,求:
(1)二面角B-A′D′-D的平面角的正切值;
(2)三棱锥A′-BB′D′的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.180°+k•360°(k∈Z)表示(  )
A.第二象限角B.第三象限角C.第四象限角D.界限角

查看答案和解析>>

同步练习册答案