精英家教网 > 高中数学 > 题目详情
2.一个正方体的体积为27cm3在正方体内任取一点,则这点到各面距离都大于1的概率为$\frac{1}{27}$.

分析 根据几何概型的概率公式,转化为对应的体积的关系进行求解即可.

解答 解:∵正方体的体积为27cm3
∴正方体的棱长为3,
在正方体内,到各面的距离大于1的点位于一个边长为1的小正方体内,
小正方体的体积为1,
大正方体的体积为33=27,
∴所求概率为$\frac{1}{27}$.
故答案为:$\frac{1}{27}$.

点评 本题考查了几何概型的概率计算,利用体积比求概率是几何概型概率计算的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,短轴的一个端点到右焦点的距离为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为$\frac{{\sqrt{3}}}{2}$,求△AOB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y的取值如表所示,且线性回归方程为$\widehat{y}$=bx+$\frac{13}{2}$,则b=(  )
x234
y645
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),作直线l交椭圆于P,Q两点,M为线段PQ的中点,O为坐标原点,设直线l的斜率为k1,直线OM的斜率为k2,k1k2=-$\frac{2}{3}$.
(1)求椭圆C的离心率;
(2)设直线l与x轴交于点D(-$\sqrt{3}$,0),且满足$\overrightarrow{DP}$=2$\overrightarrow{QD}$,当△OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,已知PA⊥平面ABC,AC⊥AB,AP=BC,∠CBA=30°,D、E分别是BC、AP的中点.则异面直线AC与DE所成角的正切值为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),且l1⊥l2
(2)l1∥l2,且坐标原点到l1与l2的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点M(x,y)是平面直角坐标系上的一个动点,点M到直线x=-4的距离等于点M到点D(-1,0)的距离的2倍,记动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)斜率为$\frac{1}{2}$的直线l与曲线C交于A、B两个不同点,若直线l不过点$P(1,\frac{3}{2})$,设直线PA、PB的斜率分别为kPA、kPB,求kPA+kPB的数值; 
(3)试问:是否存在一个定圆N,与以动点M为圆心,以MD为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中即会唱歌又会跳舞的人数,且$P(ξ>0)=\frac{7}{10}$.
(1)求文娱队的队员人数;   
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数h(x)=ax3-bx+1008,若h(-t)=2016,则h(t)等于(  )
A.1008B.0C.2016D.不确定

查看答案和解析>>

同步练习册答案