精英家教网 > 高中数学 > 题目详情
13.已知x,y的取值如表所示,且线性回归方程为$\widehat{y}$=bx+$\frac{13}{2}$,则b=(  )
x234
y645
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

分析 求出数据中心代入回归方程解出b.

解答 解:$\overline{x}$=$\frac{2+3+4}{3}=3$,$\overline{y}=\frac{6+4+5}{3}=5$.
∴5=3b+$\frac{13}{2}$,解得b=-$\frac{1}{2}$.
故选D.

点评 本题考查了线性回归方程与数据中心的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.己知函数f(x)=x3+ax+$\frac{1}{4}$,g(x)=-lnx用min{m,n}表示m,n中的最小值,设函数h(x)=min﹛(f(x),g(x)} (x>0),则当-$\frac{5}{4}$<a<-$\frac{3}{4}$时,h(x)的零点个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用数学归纳法证明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,从n=k到n=k+1,等号左边需增加的代数式为(k+1)(3k+4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是$\sqrt{61}$和$\sqrt{89}$,则这个棱柱的侧面积是100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点M(4,-1),点P是直线l:y=2x+3上的任一点,则|PM|最小值为$\frac{{12\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩.例如:表中地理成绩为A等级的共有14+40+10=64人,已知x与y均为A等级的概率是0.07.
x
人数
y
ABC
Al44010
Ba36b
C28834
(Ⅰ)设在该样本中,数学成绩优秀率是30%,求a,b的值;
(Ⅱ)在地理成绩为B等级的学生中,已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知p:函数f(x)=x2-2mx+1在(-∞,2)上为减函数;q:方程4x2+4(m-2)x+1=0无实根,若“p∨q”为真,“p∧q”为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个正方体的体积为27cm3在正方体内任取一点,则这点到各面距离都大于1的概率为$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\frac{{x}^{2}+3x+sin2x}{{x}^{2}}$(x≠0),若f(m)=1.则f(-m)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案