分析 根据线面垂直的定义,利用勾股定理求出底面菱形的对角线长,再由菱形的性质算出底面的边长,根据直棱柱的侧面积公式,即可求出该棱柱的侧面积.
解答
解设直四棱柱ABCD-A1B1C1D1中,对角线A1C=$\sqrt{61}$,BD1=$\sqrt{89}$,
∵A1A⊥平面ABCD,AC?平面ABCD,∴A1A⊥AC,
Rt△A1AC中,A1A=5,可得AC=$\sqrt{{{A}_{1}C}^{2}{{-A}_{1}A}^{2}}$=$\sqrt{{(\sqrt{61})}^{2}{-5}^{2}}$=6,
同理可得BD=$\sqrt{{{BD}_{1}}^{2}{-{DD}_{1}}^{2}}$=$\sqrt{{(\sqrt{89})}^{2}{-5}^{2}}$=8;
∵四边形ABCD为菱形,可得AC、BD互相垂直平分,
∴AB=$\sqrt{{(\frac{6}{2})}^{2}{+(\frac{8}{2})}^{2}}$=5,即菱形ABCD的边长等于5;
因此,这个棱柱的侧面积为S侧=(AB+BC+CD+DA)×A1A=4×5×5=100.
故答案为:100.
点评 本题考查了求直棱柱的侧面积的应用问题,也考查了线面垂直的定义、菱形的性质和直棱柱的侧面积公式等知识,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{64\sqrt{3}}}{3}$ | B. | $\frac{{91\sqrt{3}}}{3}$ | C. | $\frac{{16\sqrt{3}}}{3}$ | D. | $\frac{64}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 3 | 4 |
| y | 6 | 4 | 5 |
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com