精英家教网 > 高中数学 > 题目详情
12.设复数z满足z(2-3i)=6+4i(i为虚数单位),则|z|=(  )
A.4B.2C.$\sqrt{2}$D.1

分析 直接利用复数的模的性质求解即可.

解答 解:复数z满足z(2-3i)=6+4i,
可得|z||2-3i|=|6+4i|,
即|z|•$\sqrt{{2}^{2}+(-3)^{2}}$=$\sqrt{{6}^{2}+{4}^{2}}$=2$\sqrt{13}$,
可得|z|=2.
故选:B.

点评 本题考查复数的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知圆C:(x-3)2+(y-4)2=1和两点 A(-m,0),B(m,0)(m>0),若圆上存在点 P,使得∠APB=90°,则m的取值范围是[4,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线ax-by+c=0(abc≠0)与圆O:x2+y2=1相离,且|a|+|b|>|c|,则|a|,|b|,|c|为边长的三角形是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.三棱锥D-ABC内接于表面积为100π的球面,DA⊥平面ABC,且AB=8,AC⊥BC,∠BAC=30°,则三棱锥D-ABC的体积为16$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,四棱锥P-ABCD的底面是梯形,且AB∥CD,AB⊥平面PAD,E是PB中点,CD=PD=AD=$\frac{1}{2}$AB.
(Ⅰ)求证:CE⊥平面PAB;
(Ⅱ)若CE=$\sqrt{3}$,AB=4,求直线CE与平面PDC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,G为ABC的重心,BE=$\frac{1}{3}$BC1
(1)求证:GE∥平面AA1B1B;
(2)若侧面ABB1A1⊥底面ABC,∠A1AB=∠BAC=60°,AA1=AB=AC=2,求直线A1B与平面B1GE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,山顶上有一座铁塔,在地面上一点A处测得塔顶B处的仰角α=60°,在山顶C处测得A点的俯角β=45°,已知塔高BC为50m,则山高CD等于25$({\sqrt{3}+1})$m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个兴趣学习小组由12男生6女生组成,从中随机选取3人作为领队,记选取的3名领队中男生的人数为X,则X的期望E(X)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设二次函数f(x)满足f(0)=-1,f(x)-2=0的两个根分别为-3,1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)图象恒在直线y=x+m上方,试确定实数m的取值范围.

查看答案和解析>>

同步练习册答案