精英家教网 > 高中数学 > 题目详情
1.已知锐角△ABC的内角A,B,C所对边的长分别为a,b,c,若向量$\overrightarrow m=(2sinA,\sqrt{3}),\;\;\overrightarrow n=(a,c)$,且$\overrightarrow m∥\overrightarrow n$.
(1)求角C的大小;
(2)设c=5,△ABC的面积是$2\sqrt{3}$,求△ABC的周长.

分析 (1)由已知利用向量共线的性质可得$\sqrt{3}$a=2csinA利用正弦定理化简可得$sinC=\frac{{\sqrt{3}}}{2}$,结合C为锐角,即可得解C的值.
(2)利用三角形面积公式可求ab=8,由余弦定理得(a+b)2-3ab=25,进而可求a+b的值,即可得解△ABC的周长.

解答 (本题满分为12分)
解:(1)由∵向量$\overrightarrow m=(2sinA,\sqrt{3}),\;\;\overrightarrow n=(a,c)$,且$\overrightarrow m∥\overrightarrow n$,
∴$\sqrt{3}$a=2csinA,---------------------------------------------2分
∴得:$\sqrt{3}$sinA=2sinCsinA,
∵sinA≠0,
∴$\sqrt{3}=2sinC$
∴$sinC=\frac{{\sqrt{3}}}{2}$
∴$C=\frac{π}{3}$(C为锐角).------6分
(2)∵S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$ab×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∴ab=8,-------------------7分
由余弦定理得:a2+b2-2abcosC=c2,----------------------------8分
即:a2+b2-ab=25,(a+b)2-3ab=25,------------------------10分
∴(a+b)2=49,可得:a+b=7,
∴△ABC的周长为a+b+c=12.--------------------------------------------------12分.

点评 本题主要考查了平面向量共线的性质,正弦定理,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a$=(2,x),$\overrightarrow b$=(1,3),$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则实数x的取值范围为(-$\frac{2}{3}$,6)∪(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线l的方程为x-y+1=0,则直线斜率为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知m>0,n>0,2m+n=4,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为$\frac{5}{4}$,则S5=(  )
A.29B.31C.33D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点(-1,2)到直线l:3x-2=0的距离(  )
A.$\frac{5}{3}$B.3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上异于A、B的点.
PA=AB,∠BAC=60°,点D,E分别在棱PB,PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PBC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给定两个命题,p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根.如果p与q中有且仅有一个为真命题,则实数a的取值范围为(-∞,0)∪($\frac{1}{4}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,若$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,则(  )
A.$\overrightarrow{c}$=-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{3}{2}$$\overrightarrow{b}$B.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$C.$\overrightarrow{c}$=-$\overrightarrow{a}$+2$\overrightarrow{b}$D.$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$

查看答案和解析>>

同步练习册答案