精英家教网 > 高中数学 > 题目详情
3.已知m>0,n>0,2m+n=4,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为2.

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵m>0,n>0,2m+n=4,
∴$\frac{m}{2}+\frac{n}{4}=1$
那么:$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)($\frac{m}{2}+\frac{n}{4}$)=$\frac{1}{2}+\frac{n}{4m}+\frac{1}{2}+\frac{m}{n}$≥1+$2\sqrt{\frac{n}{4m}•\frac{m}{n}}$=2.当且仅当m=1,n=2时,取等号.
则$\frac{1}{m}$+$\frac{2}{n}$的最小值为2
故答案为:2.

点评 本题考查了“乘1法”与基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x3+ax2+bx+c.
(I)求曲线y=f(x)在点(0,f(0))处的切线方程;
(II)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=|x+$\frac{6}{a}$|+|x-a|(a>0).
(Ⅰ)证明:f(x)≥2$\sqrt{6}$;
(Ⅱ)若f(3)<7,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,an+1=2an+3,求数列通项及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.三角形三个顶点是A(4,0)B(6,7)C(0,3).
(1)求BC边的垂直平分线方程;
(2)求A的内角平分线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|1<x<log2k},集合A中至少有3个元素,则(  )
A.k>8B.k≥8C.k>16D.k≥16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知锐角△ABC的内角A,B,C所对边的长分别为a,b,c,若向量$\overrightarrow m=(2sinA,\sqrt{3}),\;\;\overrightarrow n=(a,c)$,且$\overrightarrow m∥\overrightarrow n$.
(1)求角C的大小;
(2)设c=5,△ABC的面积是$2\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题:“?b∈R,使直线y=-x+b是曲线y=x3-3ax的切线”是假命题,则实数a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$a>\frac{1}{3}$D.$a≥\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=3x2+2(a-1)x+6在(-∞,1)上是减函数,在(1,+∞)上是增函数,则a=-2.

查看答案和解析>>

同步练习册答案