| A. | $a<\frac{1}{3}$ | B. | $a≤\frac{1}{3}$ | C. | $a>\frac{1}{3}$ | D. | $a≥\frac{1}{3}$ |
分析 由题意,存在实数a,满足对任意的实数b,直线y=-x+b都不是曲线y=x3-3ax的切线.由直线y=-x+b得直线斜率为-1,直线y=-x+b不与曲线f(x)相切知曲线f(x)上任一点斜率都不为-1,即f′(x)≠-1,求导函数,并求出其范围[-3a,+∞),得不等式-3a>-1,即得实数a的取值范围.
解答 解:由题意,存在实数a,满足对任意的实数b,直线y=-x+b都不是曲线y=x3-3ax的切线.
设f(x)=x3-3ax,求导函数,可得f′(x)=3x2-3a∈[-3a,+∞),
∵存在实数a,满足对任意的实数b,直线y=-x+b都不是曲线y=x3-3ax的切线,
∴-1∉[-3a,+∞),∴-3a>-1,即实数a的取值范围为a<$\frac{1}{3}$
故选:A.
点评 本题考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4) | B. | (0,3) | C. | (0.4) | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com