精英家教网 > 高中数学 > 题目详情
6.点(-1,2)到直线l:3x-2=0的距离(  )
A.$\frac{5}{3}$B.3C.1D.2

分析 利用点到直线的距离公式即可求解即可.

解答 解:点(-1,2)到直线的距离是:$\frac{|3×(-1)-2|}{\sqrt{{3}^{2}+{0}^{2}}}$=$\frac{5}{3}$.
故选:A.

点评 本题考查了点到直线的距离公式,正确记忆公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数f(x)=-$\frac{1}{{1+{x^2}}}$,则不等式f(2x-1)>f(-1)的解集是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,an+1=2an+3,求数列通项及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|1<x<log2k},集合A中至少有3个元素,则(  )
A.k>8B.k≥8C.k>16D.k≥16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知锐角△ABC的内角A,B,C所对边的长分别为a,b,c,若向量$\overrightarrow m=(2sinA,\sqrt{3}),\;\;\overrightarrow n=(a,c)$,且$\overrightarrow m∥\overrightarrow n$.
(1)求角C的大小;
(2)设c=5,△ABC的面积是$2\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=$\frac{1}{2}$BC=1,E是底边BC上的一点,且EC=3BE.现将△CDE沿DE折起到△C1DE的位置,得到如图2所示的四棱锥C1-ABED,且C1A=AB.
(Ⅰ)求证:C1A⊥平面ABED;
(Ⅱ)若M是棱C1E的中点,求直线BM与平面C1DE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题:“?b∈R,使直线y=-x+b是曲线y=x3-3ax的切线”是假命题,则实数a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$a>\frac{1}{3}$D.$a≥\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.球O面上四点P、A、B、C满足:PA、PB、PC两两垂直,$PA=3,PB=4,PC=5\sqrt{3}$,则球O的表面积等于100π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数$f(x)=\frac{1}{2}ln(2x)+\frac{1}{2}$,数列{an}满足:a1=1,an+1=f(an)(n∈N*).
(1)求证:$x>\frac{1}{2}$时,f(x)<x;
(2)求证:$\frac{1}{2}<{a_n}≤1$(n∈N*);
(3)求证:$\sum_{i=1}^n{({a_i}-{a_{i+1}})}•{a_{i+1}}<\frac{3}{8}$(n∈N*).

查看答案和解析>>

同步练习册答案