精英家教网 > 高中数学 > 题目详情
11.如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=$\frac{1}{2}$BC=1,E是底边BC上的一点,且EC=3BE.现将△CDE沿DE折起到△C1DE的位置,得到如图2所示的四棱锥C1-ABED,且C1A=AB.
(Ⅰ)求证:C1A⊥平面ABED;
(Ⅱ)若M是棱C1E的中点,求直线BM与平面C1DE所成角的正弦值.

分析 (1)连接AE,利用勾股定理的逆定理证明C1A⊥AD,C1A⊥AE,得出C1A⊥平面ABED;
(2)根据等积法求出B到平面C1DE的距离h,再计算BM,即可得出直线BM与平面C1DE所成角的正弦值$\frac{h}{BM}$.

解答 证明:(I)连接AE.
∵直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=$\frac{1}{2}$BC=1,EC=3BE,
∴BE=$\frac{1}{2}$,CE=$\frac{3}{2}$,CD=$\sqrt{2}$,AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\frac{\sqrt{5}}{2}$.即C1E=$\frac{3}{2}$,C1D=$\sqrt{2}$,
∵C1A=AB=1,
∴C1A2+AD2=C1D2,C1A2+AE2=C1E2
∴C1A⊥AD,C1A⊥AE,
又AD?平面ABED,AE?平面ABED,AD∩AE=A,
∴C1A⊥平面ABED.
(II)连接BD,则V${\;}_{{C}_{1}-BDE}$=$\frac{1}{3}$S△BDE•C1A=$\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×1×1$=$\frac{1}{12}$,
∵S${\;}_{△{C}_{1}DE}$=S△CDE=$\frac{1}{2}×\frac{3}{2}×1$=$\frac{3}{4}$,设B到平面C1DE的距离为h,
则V${\;}_{B-{C}_{1}DE}$=$\frac{1}{3}{S}_{△{C}_{1}DE}•h$=$\frac{h}{4}$,
∵V${\;}_{{C}_{1}-BDE}$=V${\;}_{B-{C}_{1}DE}$,∴h=$\frac{1}{3}$.
∵BE⊥AB,BE⊥C1A,C1A∩AB=A,
∴BE⊥平面C1AB,
∴BE⊥BC1,又M为C1E的中点,
∴BM=$\frac{1}{2}$C1E=$\frac{3}{4}$.
∴直线BM与平面C1DE所成角的正弦值为$\frac{h}{BM}$=$\frac{4}{9}$.

点评 本题考查了线面垂直的判定,空间距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为(  )
A.61B.62C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若方程(6a2-a-2)x+(3a2-5a+2)y+a+1=0表示平行于y轴的直线,则a为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,
且A、B、C分别为△ABC的三边a、b、c所对的角.
(1)求角C的大小;
(2)若a+b=2,设D为AB边上中点,求|$\overrightarrow{CD}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点(-1,2)到直线l:3x-2=0的距离(  )
A.$\frac{5}{3}$B.3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设命题p:函数f(x)=tanx是其定义域上的增函数;命题q:函数g(x)=3x-3-x为奇函数.则下列命题中真命题是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C相交于点$({-1,\frac{{\sqrt{2}}}{2}})$.
(1)求抛物线的方程;
(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果一个正四面体的体积为9dm3,则其表面积S的值为18$\sqrt{3}$dm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数$f(x)=\frac{1}{2}{x^2}-2x+alnx$有两个不同的极值点,则实数a的取值范围是(  )
A.a>1B.-1<a<0C.a<1D.0<a<1

查看答案和解析>>

同步练习册答案