精英家教网 > 高中数学 > 题目详情
18.三角形三个顶点是A(4,0)B(6,7)C(0,3).
(1)求BC边的垂直平分线方程;
(2)求A的内角平分线方程.

分析 (1)利用斜率计算公式、中点坐标公式可得kBC,线段BC的中点M,再利用相互垂直的直线斜率之间的关系、点斜式即可得出.
(2)k1=kAB=$\frac{7-0}{6-4}$=$\frac{7}{2}$,k2=kAC=$\frac{0-3}{4-0}$=-$\frac{3}{4}$.设A的内角平分线的斜率为k,可得$\frac{\frac{7}{2}-k}{1+\frac{7}{2}k}$=$\frac{k+\frac{3}{4}}{1-\frac{3}{4}k}$,解出k即可得出.

解答 解:(1)kBC=$\frac{7-3}{6-0}$=$\frac{2}{3}$,线段BC的中点M(3,5),
∴BC边的垂直平分线方程为:y-5=-$\frac{3}{2}$(x-3),化为:3x+2y-19=0.
(2)k1=kAB=$\frac{7-0}{6-4}$=$\frac{7}{2}$,k2=kAC=$\frac{0-3}{4-0}$=-$\frac{3}{4}$.
设A的内角平分线的斜率为k,则$\frac{\frac{7}{2}-k}{1+\frac{7}{2}k}$=$\frac{k+\frac{3}{4}}{1-\frac{3}{4}k}$,∴11k2+29k-11=0,解得k=$\frac{-29±5\sqrt{53}}{22}$.
∴A的内角平分线方程为:y=$\frac{5\sqrt{53}-29}{22}$(x-4),即(3$\sqrt{53}$+35)x+(4$\sqrt{53}$-10)y-(140+2$\sqrt{53}$)=0.

点评 本题考查了斜率计算公式、中点坐标公式、相互垂直的直线斜率之间的关系、点斜式、斜截式、角平分线的性质、到角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知t为实数,函数f(x)=(x2-4)(x-t)且f′(-1)=0,则t等于(  )
A.0B.-1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(-1)=2,当x>0时,f(x)<0恒成立.
(1)求f(0),f(2)的值;
(2)若不等式f(t2+3t)+f(t+k)≤4对于t∈R恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线l的方程为x-y+1=0,则直线斜率为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.实数m分别取什么数值时?复数z=(m2+5m+6)+(m2-2m-15)i
(1)与复数2-12i相等;
(2)与复数12+16i互为共轭;
(3)复数z在复平面内对应的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知m>0,n>0,2m+n=4,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为$\frac{5}{4}$,则S5=(  )
A.29B.31C.33D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上异于A、B的点.
PA=AB,∠BAC=60°,点D,E分别在棱PB,PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PBC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知原命题:若sinx=1,则$x=\frac{π}{2}$,则它的否命题为(  )
A.若sinx=1,则$x≠\frac{π}{2}$B.存在sinx=1,使$x≠\frac{π}{2}$
C.若sinx≠1,则$x≠\frac{π}{2}$D.若$x≠\frac{π}{2}$,则sinx≠1

查看答案和解析>>

同步练习册答案