精英家教网 > 高中数学 > 题目详情
6.在极坐标系中,点$A({\sqrt{3},\frac{π}{6}}),B({\sqrt{3},\frac{π}{2}})$,曲线 $C:ρ=2cos({θ-\frac{π}{3}})\;(ρ≥0)$.以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)在直角坐标系中,求点A,B的直角坐标及曲线C的参数方程;
(Ⅱ)设点M为曲线C上的动点,求|MA|2+|MB|2取值范围.

分析 (I)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,可得A,B直角坐标.曲线 $C:ρ=2cos({θ-\frac{π}{3}})\;(ρ≥0)$.即ρ2=2ρ$(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$,即可化为直角坐标方程,通过配方利用平方关系可得参数方程.
(II)不妨设M$(\frac{1}{2}+cosθ,\frac{\sqrt{3}}{2}+sinθ)$,可得|MA|2+|MB|2=4-2sin$(α+\frac{π}{6})$.利用sin$(α+\frac{π}{6})$∈[-1,1],即可得出.

解答 解:(I)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,则点$A({\sqrt{3},\frac{π}{6}}),B({\sqrt{3},\frac{π}{2}})$的直角坐标分别为:A$(\frac{3}{2},\frac{\sqrt{3}}{2})$,B$(0,\sqrt{3})$.
曲线 $C:ρ=2cos({θ-\frac{π}{3}})\;(ρ≥0)$.即ρ2=2ρ$(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$,化为直角坐标方程:x2+y2-x-$\sqrt{3}$y=0.
配方为:$(x-\frac{1}{2})^{2}$+$(y-\frac{\sqrt{3}}{2})^{2}$=1.
可得参数方程为:$\left\{\begin{array}{l}{x=\frac{1}{2}+cosθ}\\{y=\frac{\sqrt{3}}{2}+sinθ}\end{array}\right.$.
(II)不妨设M$(\frac{1}{2}+cosθ,\frac{\sqrt{3}}{2}+sinθ)$,
则|MA|2+|MB|2=(cosα-1)2+sin2θ+$(\frac{1}{2}+cosθ)^{2}$+$(sinθ-\frac{\sqrt{3}}{2})^{2}$=4-cosα-$\sqrt{3}$sinα=4-2sin$(α+\frac{π}{6})$.
∵sin$(α+\frac{π}{6})$∈[-1,1],则4-2sin$(α+\frac{π}{6})$∈[2,6].
因此:|MA|2+|MB|2取值范围是[2,6].

点评 本题考查了极坐标方程直角坐标、圆的参数方程、两点之间的距离公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年江西省高一上学期第一次月考数学试卷(解析版) 题型:选择题

已知,则等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二文上第一次月考数学试卷(解析版) 题型:选择题

已知点A(2,﹣3)、B(﹣3,﹣2)直线l过点P(1, 1),且与线段AB相交,则直线l的斜率k的取值范围是( )

A.或k≤﹣4

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线过点(-1,-1),且与圆(x-2)2+y2=1相交于两个不同的点,则该直线的斜率的取值范围为(  )
A.$[{-\frac{3}{4},0}]$B.$[{0,\frac{3}{4}}]$C.$({-\frac{3}{4},0})$D.$({0,\frac{3}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$.
(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求$\frac{1}{|FA|}+\frac{1}{|FB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是(  )
A.3B.6C.18D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在平行四边形ABCD中,E,F分别是BC,DC的中点,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{BF}$和$\overrightarrow{DE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于函数$f(x)=4sin(2x+\frac{π}{3}),x∈$R有下列命题:
①函数 y=f(x)的最小正周期是π.
②函数y=f(x)的初相是$2x+\frac{π}{3}$.
③函数y=f(x)的振幅是4.
其中正确的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$0<α<β<\frac{π}{2},sinα=\frac{3}{5},cos(β-α)=\frac{12}{13}$,则sinβ的值为(  )
A.$\frac{16}{65}$B.$\frac{33}{65}$C.$\frac{56}{65}$D.$\frac{63}{65}$

查看答案和解析>>

同步练习册答案