精英家教网 > 高中数学 > 题目详情

【题目】 为等差数列 的前n项和,且 ,其中 表示不超过x的最大整数,如 .
(1)求
(2)求数列 的前1 000项和.

【答案】
(1)

解:设 的公差为

,∴ ,∴


(2)

解:记 的前 项和为 ,则

时,

时,

时,

时,


【解析】(1)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1 , b11 , b101;(2)找出数列的规律,然后求数列{bn}的前1000项和
【考点精析】本题主要考查了数列的前n项和和等差数列的性质的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线E:x2=4y的焦点,直线l为准线,C为抛物线上的一点(C在第一象限),以点C为圆心,|CF|为半径的圆与y轴交于D,F两点,且△CDF为正三角形.
(Ⅰ)求圆C的方程;
(Ⅱ)设P为l上任意一点,过P作抛物线x2=4y的切线,切点为A,B,判断直线AB与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=3tan.

(1)求函数的最小正周期;

(2)求函数的定义域;

(3)说明此函数的图象是由y=tan x的图象经过怎样的变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,其准线与轴交于点,作斜率为的直线与抛物线交于两点,的中点为的垂直平分线与轴交于

(1)的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点分别到两定点连线的斜率的乘积为,的轨迹为曲线分别为曲线的左、右焦点,则下列命题中:

(1)曲线的焦点坐标为;

(2),;

(3),的内切圆圆心在直线;

(4),的最小值为;

其中正确命题的序号是:______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,直线相交于点,且这两条直线的斜率之积为

(1)求点的轨迹方程;

(2)记点的轨迹为曲线,曲线上在第一象限的点的横坐标为,过点且斜率互为相反数的两条直线分别交曲线,求直线的斜率(其中点为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C的对边分别是a,b,c,且有.

(1) 求C;

(2) 若c=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)计算甲、乙两人射箭命中环数的平均数和标准差;

(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,直线与抛物线交于 两点.点 为抛物线上一动点,直线 分别与轴交于 .

(I)若的面积为,求点的坐标;

(II)当直线时,求线段的长;

(III)若面积相等,求的面积.

查看答案和解析>>

同步练习册答案