【题目】已知函数y=3tan.
(1)求函数的最小正周期;
(2)求函数的定义域;
(3)说明此函数的图象是由y=tan x的图象经过怎样的变换得到的?
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,函数g(x)=f(x)﹣k.
(1)当m=2时,若函数g(x)有两个零点,则k的取值范围是;
(2)若存在实数k使得函数g(x)有两个零点,则m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,过椭圆C的右焦点且垂直于x轴的直线与椭圆交于A,B两点,且|AB|= .
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点(1,0)的直线l交椭圆C于E,F两点,若存在点G(﹣1,y0)使△EFG为等边三角形,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点与点的距离比它的直线的距离小2.
(1)求点的轨迹方程;
(2)是点轨迹上互相垂直的两条弦,问:直线是否经过轴上一定点,若经过,求出该点坐标;若不经过,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为为曲线上的动点,点在线段上,且满足.
(1)求点的轨迹的直角坐标方程;
(2)直线的参数方程是(为参数),其中. 与交于点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin
(A>0,ω>0)的最小值为-2,其图象相邻两个对称中心之间的距离为.
(1)求f(x)的最小正周期及对称轴方程;
(2)若f,求f的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求证:PD 平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求 的值;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com