精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。
(1)   (2)

试题分析:(1)椭圆的标准方程:
(2)设,设
 
由韦达定理得   ①



代入上式整理得:
,由
,将①代入得
所以实数
点评:本题主要考查了椭圆的性质在椭圆的方程求解中的应用,直线与椭圆的相交关系的应用及方程的根与系数关系的应用,属于直线与曲线关系的综合应用
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线x2=-y,的准线方程是(   )。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知直线与曲线交于不同的两点为坐标原点.
(1)若,求证:曲线是一个圆;
(2)若,当时,求曲线的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥轴时,求的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线与曲线有四个不同的交点,则实数m的取值范围是(   )
A.()B.(,0)∪(0,)
C.[]D.()∪(,+)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的离心率,过点的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线的焦点为,准线为,为抛物线上的一点,,垂足为.若直线的斜率为,则
A.4B.8C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,为椭圆上的一点,且,则的面积是(  )
A.7B.C.D.

查看答案和解析>>

同步练习册答案