精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b,
(1)若函数f(x)在x=-1处取得极值-
4
3
,求实数a,b的值;
(2)若a=1,且函数f(x)在[-1,2]上恰有两个零点,求实数b的取值范围.
(1)f′(x)=x2-3ax-(a-3),….(2分)
函数f(x)在x=-1处取得极值-
4
3

f′(-1)=1+3a-a+3=0
f(-1)=-
1
3
-
3
2
a+a-3+b=-
4
3
….(6分)
解得,
a=-2
b=1

经检验,当a=-2,b=1时函数f(x)在x=-1处取得极值…(8分)
(2)若a=1,f(x)=
1
3
x3-
3
2
x2+2x+b,f′(x)=x2-3x+2,
令f′(x)=0,得到x=1或x=2,
x -1  (-1,1)   1   (1,2)    2
f′(x) + -
f(x) b-
23
6
极大值
b+
5
6
b+
2
3
…..(11分)
由于函数f(x)在[-1,2]上恰有两个零点
f(-1)≤0 
f(1)>0 
f(2)≤0
b-
23
6
≤0
 
b+
5
6
>0
 
b+
2
3
≤0
解得-
5
6
<b≤-
2
3
…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案