精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}+\overrightarrow{b}$)⊥$\overrightarrow{a}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{21}$.

分析 根据平面向量的数量积定义与模长公式,计算即可.

解答 解:∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}+\overrightarrow{b}$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=-${\overrightarrow{a}}^{2}$=-1,
∴${(\overrightarrow{a}-2\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=12-4×(-1)+4×22=21,
∴|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{21}$.
故答案为:$\sqrt{21}$.

点评 本题考查了平面向量的数量积运算与模长公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≤2}\\{x+y≥2}\\{3x-y≤3}\end{array}\right.$,则2x-y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某多面体的三视图如图所示,则该多面体的体积为(  )
A.2B.$\frac{20}{3}$C.$\frac{22}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$的值如下,其中拟合效果最好的模型是(  )
A.模型1对应的R2=0.48B.模型3对应的R2=0.15
C.模型2对应的R2=0.96D.模型4对应的R2=0.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,面积为S的正方形ABCD中有一个不规则的图形M,可以用随机模拟方法近似计算M的面积,在正方向ABCD中随机投掷3600个点,若恰好有1200个点落入M中,则M的面积的近似值为$\frac{S}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列四个命题:
①在△ABC中,若C>$\frac{π}{2}$,则sinA<cosB;
②已知点A(0,3),则函数y=$\sqrt{3}$cosx-sinx的图象上存在一点P,使得|PA|=1;
③函数y=cos2x+2bcosx+c是周期函数,且周期与b有关,与c无关;
④设方程x+sinx=$\frac{π}{2}$的解是x1,方程x+arcsinx=$\frac{π}{2}$的解是x2,则x1+x2=π.
其中真命题的序号是①③.(把你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$sin(\frac{π}{4}-α)=\frac{5}{13},α∈(0,\frac{π}{4})$,则$\frac{cos2α}{{cos(\frac{π}{4}+α)}}$=$\frac{24}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)在R上可导,且f(0)=1,当x≠1时,其导函数满f′(x)满$\frac{f′(x)-f(x)}{x-1}$>0,则下列结论错误的是(  )
A.y=$\frac{f(x)}{{e}^{x}}$在(1,+∞)上是增函数B.x=1是函数y=$\frac{f(x)}{{e}^{x}}$的极小值点
C.函数y=$\frac{f(x)}{{e}^{x}}$至多有两个零点D.x≤0时f(x)≤ex恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计$\int_0^2{f(x)dx}$的值约为(  )
A.$\frac{99}{25}$B.$\frac{99}{50}$C.$\frac{3}{10}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案